

Indicaciones y formas de RT según el tipo molecular: Luminal B ensayo Neo-Checkray

Philip Poortmans, MD, PhD
Iridium Netwerk & Antwerp University, Antwerpen (B)

Conflict of interest

Affidea – medical advisor

MSD - consultant

And I worry about the future...

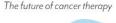
STOP THE WARS

Radiation therapy & immune therapy — Neo-CheckRay

- Introduction
- Breast cancer immunogenicity
- Immunotherapy in BC: where are we?
- Luminal-B BC: Neo-CheckRay
- Discussion
- Conclusions

Radiation Therapy & Immune Therapy: https://images.app.g oo.gl/e86xRFQpFaKhh ViU7

Philip Poortmans, MD, PhD


Iridium Netwerk & Antwerp University, Antwerpen (B)

Former President

Alice Zamagni, MD

Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia (I)

Department of Medical and Surgical Sciences, University of Bologna (I)

Recommendations on integration of radiation therapy with targeted treatments for breast cancer consensus meeting

Florence (IT), 16-17th June 2023

Grand Hotel Mediterraneo, Lungarno del Tempio, 44

Endorsed by

Sara Alkner Liesbeth Boersma Maurizio Callari Saverio Cinieri Robert Clarke Giuseppe Curigliano Lucia Del Mastro Maria Ekholm Alessandra Gennari Stephanie Kroeze Marcos Malumbres Ingvil Mjaaland

Carlotta Becherini Florence, Italy Saverio Caini Florence, Italy Charlotte Coles Cambridge, UK **Javier Cortes** Barcelona, Spain Clare Isacke London, UK Orit Kaidar-Person Sheba Tel Hashomer, Israel Matteo Lambertini Genoa, Italy Lorenzo Livi Florence, Italy Elisabetta Marangoni Paris. France Icro Meattini Florence, Italy Andrea Morandi Florence, Italy Birgitte Offersen Aarhus, Denmark Philip Poortmans Antwerp, Belgium Hope Rugo San Francisco, USA Viola Salvestrini Florence, Italy

Gustavo Nader Marta Maastricht. The Netherlands Gil Morgan Shani Paluch-Shimon Barbara Pistilli Sofia Rivera Sven Rottenberg Asal Shoushtari Rahimi Cristina Saura Tanja Skyttä Tanja Spanic

Frank Vicini

Luca Visani

Lund Sweden

Milan, Italy

Milan, Italy

Genoa, Italy

Novara, Italy

Madrid, Spain

Brindisi, Italy

Manchester, UK

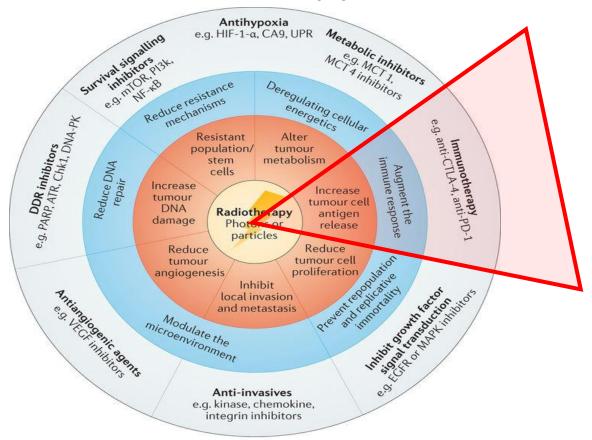
Jönköping, Sweden

Zurich, Switzerland

Stavanger, Norway

Florence, Italy São Paulo, Brazil Lund, Sweden Jerusalem, Israel Paris, France Paris France Bern, Switzerland Dallas, USA Barcelona, Spain Tampere, Finland

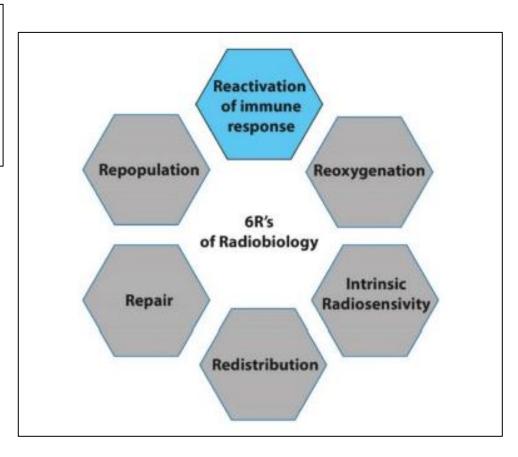
Liubliana, Slovenia


Royal Oak, USA

Policy Review

International multidisciplinary consensus on the integration of radiotherapy with new systemic treatments for breast cancer: European Society for Radiotherapy and Oncology (ESTRO)-endorsed recommendations

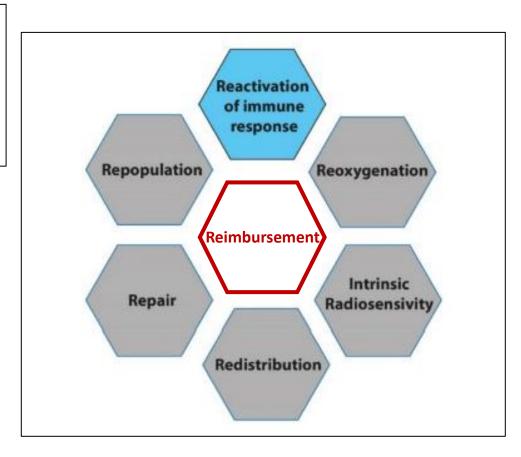
Icro Meattini, Carlotta Becherini, Saverio Caini, Charlotte E Coles, Javier Cortes, Giuseppe Curigliano, Evandro de Azambuja, Clare M Isacke, Nadia Harbeck, Orit Kaidar-Person, Elisabetta Marangoni, Birgitte V Offersen, Hope S Rugo, Viola Salvestrini, Luca Visani, Andrea Morandi, Matteo Lambertini, Philip Poortmans*, Lorenzo Livi*, on behalf of the Consensus Panellist Group†



Review

The 6th R of Radiobiology: Reactivation of Anti-Tumor Immune Response

Jihane Boustani ^{1,†}, Mathieu Grapin ^{1,†}, Pierre-Antoine Laurent ¹, Lionel Apetoh ² and Céline Mirjolet ^{1,2,*}

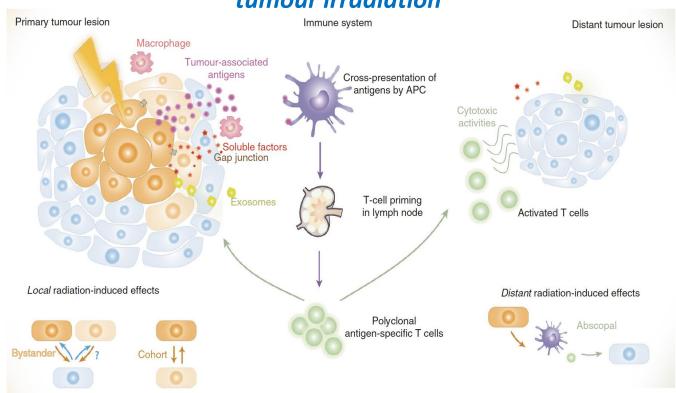


Review

The 6th R of Radiobiology: Reactivation of Anti-Tumor Immune Response

Jihane Boustani ^{1,†}, Mathieu Grapin ^{1,†}, Pierre-Antoine Laurent ¹, Lionel Apetoh ² and Céline Mirjolet ^{1,2,*}

www.nature.com/bjc

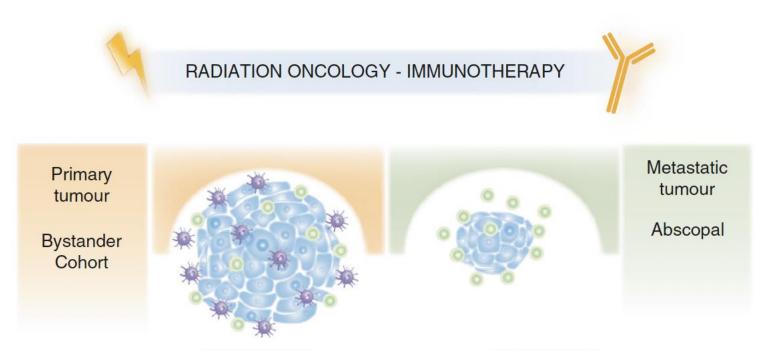


REVIEW ARTICLE

Radiation-induced bystander and abscopal effects: important lessons from preclinical models

Elisabeth Daguenet^{1,2,3}, Safa Louati^{1,3}, Anne-Sophie Wozny^{3,4}, Nicolas Vial¹, Mathilde Gras^{1,2}, Jean-Baptiste Guy^{1,3}, Alexis Vallard^{1,3}, Claire Rodriguez-Lafrasse^{3,4} and Nicolas Magné^{1,2,3}

Schematic overview of local and distant effects triggered by tumour irradiation


Bystander effects between high-dose-targeted cells (dark orange) or low-dose-targeted cells (light orange) and nonirradiated cells (blue)

Cohort effects occur between high-dose-targeted cells and low-dose-targeted cells.

Irradiation induces immunogenic cell death in cancer cells → release of tumour-associated antigens (TAAs) (pink dots) → activating immune system

Abscopal effect → distant sites

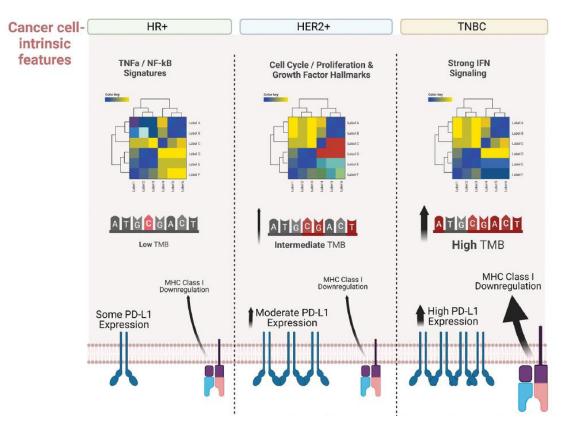
Preclinical experimental strategies for efficient radio-immunotherapy combinations in clinical routine

- ✓ Numerous clinical studies investigating radiotherapy as a combination partner for immunotherapies, particularly immune-checkpoint inhibitors, failed to reveal a therapeutic benefit over either treatment modality alone.
- ✓ In this context, radiotherapy has often been applied according to conventional regimens and/or target volumes, with limited consideration for potential radiotherapy-driven immunomodulation.
- Conventional radiation doses and fractionation schedules might result in robust immunosuppression in the tumour microenvironment, at least in part reflecting the repeated killing of circulating immune effector cells.
- Conventional radiotherapy target volumes are also expected to exacerbate local and systemic immunosuppression given that they often include tumour-draining lymph nodes (which are key sites for the initiation of anticancer immunity) and circulating immune cells.
- ✓ Multiple cellular alterations elicited by radiotherapy are temporally dynamic, suggesting that the treatment schedule (relative timing and sequencing) is a major determinant of the efficacy of radiotherapy–immunotherapy combinations.
- ✓ We surmise that improved radiotherapy regimens and target volumes might enable the development of radiotherapy immunotherapy combinations with superior clinical activity, at least in some patient populations.

- Numerous clinical studies investigating radiotherapy as a combination partner for immunotherapies, particularly immune-checkpoint inhibitors, failed to reveal a therapeutic benefit over either treatment modality alone.
- ✓ In this context, radiotherapy has often been applied according to conventional regimens and/or target volumes, with limited consideration for potential radiotherapy-driven immunomodulation.
- ✓ Conventional radiation doses and fractionation schedules might result in robust immunosuppression in the tumour microenvironment, at least in part reflecting the repeated killing of circulating immune effector cells.
- Conventional radiotherapy target volumes are also expected to exacerbate local and systemic immunosuppression given that they often include tumour-draining lymph nodes (which are key sites for the initiation of anticancer immunity) and circulating immune cells.
- ✓ Multiple cellular alterations elicited by radiotherapy are temporally dynamic, suggesting that the treatment schedule (relative timing and sequencing) is a major determinant of the efficacy of radiotherapy—immunotherapy combinations.
- ✓ We surmise that improved radiotherapy regimens and target volumes might enable the development of radiotherapy immunotherapy combinations with superior clinical activity, at least in some patient populations.

- Numerous clinical studies investigating radiotherapy as a combination partner for immunotherapies, particularly immune-checkpoint inhibitors, failed to reveal a therapeutic benefit over either treatment modality alone.
- ✓ In this context, radiotherapy has often been applied according to conventional regimens and/or target volumes, with limited consideration for potential radiotherapy-driven immunomodulation.
- ✓ Conventional radiation doses and fractionation schedules might result in robust immunosuppression in the tumour microenvironment, at least in part reflecting the repeated killing of circulating immune effector cells.
- Conventional radiotherapy target volumes are also expected to exacerbate local and systemic immunosuppression given that they often include tumour-draining lymph nodes (which are key sites for the initiation of anticancer immunity) and circulating immune cells.
- ✓ Multiple cellular alterations elicited by radiotherapy are temporally dynamic, suggesting that the treatment schedule (relative timing and sequencing) is a major determinant of the efficacy of radiotherapy—immunotherapy combinations.
- ✓ We surmise that improved radiotherapy regimens and target volumes might enable the development of radiotherapy immunotherapy combinations with superior clinical activity, at least in some patient populations.

- Numerous clinical studies investigating radiotherapy as a combination partner for immunotherapies, particularly immune-checkpoint inhibitors, failed to reveal a therapeutic benefit over either treatment modality alone.
- ✓ In this context, radiotherapy has often been applied according to conventional regimens and/or target volumes, with limited consideration for potential radiotherapy-driven immunomodulation.
- ✓ Conventional radiation doses and fractionation schedules might result in robust immunosuppression in the tumour microenvironment, at least in part reflecting the repeated killing of circulating immune effector cells.
- ✓ Conventional radiotherapy target volumes are also expected to exacerbate local and systemic immunosuppression given that they often include tumour-draining lymph nodes (which are key sites for the initiation of anticancer immunity) and circulating immune cells.
- ✓ Multiple cellular alterations elicited by radiotherapy are temporally dynamic, suggesting that the treatment schedule (relative timing and sequencing) is a major determinant of the efficacy of radiotherapy—immunotherapy combinations.
- ✓ We surmise that improved radiotherapy regimens and target volumes might enable the development of radiotherapy—immunotherapy combinations with superior clinical activity, at least in some patient populations.


- Numerous clinical studies investigating radiotherapy as a combination partner for immunotherapies, particularly immune-checkpoint inhibitors, failed to reveal a therapeutic benefit over either treatment modality alone.
- ✓ In this context, radiotherapy has often been applied according to conventional regimens and/or target volumes, with limited consideration for potential radiotherapy-driven immunomodulation.
- ✓ Conventional radiation doses and fractionation schedules might result in robust immunosuppression in the tumour microenvironment, at least in part reflecting the repeated killing of circulating immune effector cells.
- Conventional radiotherapy target volumes are also expected to exacerbate local and systemic immunosuppression given that they often include tumour-draining lymph nodes (which are key sites for the initiation of anticancer immunity) and circulating immune cells.
- ✓ Multiple cellular alterations elicited by radiotherapy are temporally dynamic, suggesting that the treatment schedule (relative timing and sequencing) is a major determinant of the efficacy of radiotherapy—immunotherapy combinations.
- ✓ We surmise that improved radiotherapy regimens and target volumes might enable the development of radiotherapy—immunotherapy combinations with superior clinical activity, at least in some patient populations.

- Numerous clinical studies investigating radiotherapy as a combination partner for immunotherapies, particularly immune-checkpoin inhibitors, failed to reveal a therapeutic benefit over either treatment modality alone.
- ✓ In this context, radiotherapy has often been applied according to conventional regimens and/or target volumes, with limited consideration for potential radiotherapy-driven immunomodulation.
- ✓ Conventional radiation doses and fractionation schedules might result in robust immunosuppression in the tumour microenvironment, at least in part reflecting the repeated killing of circulating immune effector cells.
- Conventional radiotherapy target volumes are also expected to exacerbate local and systemic immunosuppression given that they often include tumour-draining lymph nodes (which are key sites for the initiation of anticancer immunity) and circulating immune cells.
- ✓ Multiple cellular alterations elicited by radiotherapy are temporally dynamic, suggesting that the treatment schedule (relative timing and sequencing) is a major determinant of the efficacy of radiotherapy—immunotherapy combinations.
- ✓ We surmise that improved radiotherapy regimens and target volumes might enable the development of radiotherapy—immunotherapy combinations with superior clinical activity, at least in some patient populations.

Radiation therapy & immune therapy — Neo-CheckRay

- Introduction
- Breast cancer immunogenicity
- Immunotherapy in BC: where are we?
- Luminal-B BC: Neo-CheckRay
- Discussion
- Conclusions

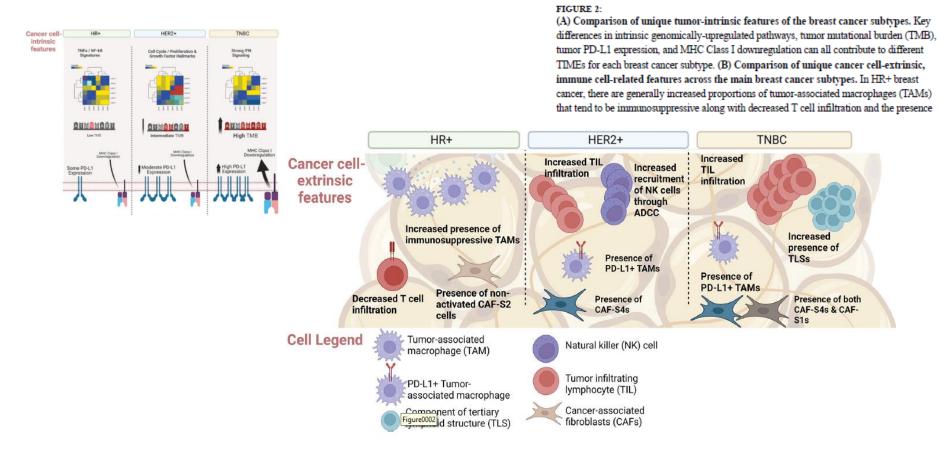

RT & immune therapy: BC immunogenicity

FIGURE 2:

(A) Comparison of unique tumor-intrinsic features of the breast cancer subtypes. Key differences in intrinsic genomically-upregulated pathways, tumor mutational burden (TMB), tumor PD-L1 expression, and MHC Class I downregulation can all contribute to different TIMEs for each breast cancer subtype. (B) Comparison of unique cancer cell-extrinsic, immune cell-related features across the main breast cancer subtypes. In HR+ breast cancer, there are generally increased proportions of tumor-associated macrophages (TAMs) that tend to be immunosuppressive along with decreased T cell infiltration and the presence

RT & immune therapy: BC immunogenicity

Radiation therapy & immune therapy — Neo-CheckRay

- Introduction
- Breast cancer immunogenicity
- Immunotherapy in BC: where are we?
- Luminal-B BC: Neo-CheckRay
- Discussion
- Conclusions

RT & immune therapy: Evidence in BC - postoperative

Study	Lead Institution	Phase/N	Tumor type	Intervention
SWOG S1418/NRG BR006: Pembrolizumab as adjuvant therapy for TNBC (NCT02954874)	SWOG Cancer Research Network	III/1155	TNBC no pCR	RT (SoC) ± Pembrolizumab
BreastImmune03: Evaluate the clinical benefit of a post-op treatment with RT+nivolumab+ipilimumab VS RT+capecitabine for TNBC pts with residual disease (NCT03818685)	Centre Leon Berard	II/114	TNBC no pCR	RT (SoC)+nivolumab+ipilimumab vs RT (SoC)+capecitabine
Pembrolizumab in Combination With Hormonal Therapy During or After Radiation in Patients With HR+ Inflammatory Breast Cancer who Did Not Achieve a pCR to Neoadjuvant Chemotherapy (NCT02971748)	MD Anderson Cancer Center	11/37	HR+ IBC	Hormonal therapy + Pembrolizumab + RT (SoC)

Anti PD-1: Pembrolizumab, Nivolumab

Anti CTLA-4: Ipilimumab

RT & immune therapy: Evidence in BC - preoperative

Study	Lead Institution	Phase/N	Tumor type	Intervention
Neo-CheckRay: neo-adjuvant CT combined with SBRT ± durvalumab and oleclumab in Luminal B BC (NCT03875573)	Jules Bordet Institute	II/147	HR+/Her2- high risk	SBRT (24 Gy in 3 fr) ± durvalumab and oleclumab
CBCV: converting HR+ BC into an individualized vaccine (NCT03804944)	Weill Medical College of Cornell University	II/100	HR+/Her2-	HT + RT (24 Gy in 3 fr) ± FLT- 3, pembrolizumab or both
BC study of pre-op pembrolizumab+radiation (NCT03366844)	Cedars Sinai Medical Center	1/60	HR+/Her2- TNBC	Pembrolizumab + RT (24 Gy in 3 fr)
Effects of Pembrolizumab on the TME in TNBC ± IORT (NCT02977468)	Columbia University	I/15	TNBC	Pembrolizumab + IORT
P-RAD: pre-op Pembro + RT in BC (NCT04443348)	Massachussetts General Hospital	II/120	HR+/Her2- high risk TNBC	Pembrolizumab + NAC ± RT (9 or 24 Gy in 3 fr), includes non-randomized arm with proton therapy
BreastVAX: Preoperative RT Boost to Enhance Effectiveness of ICI in Operable Breast Cancer (NCT04454528)	Perelman Center for Advanced Medicine (Pennsylvania)	lb-II/27	TNBC HR+/Her2- (cN+) Her2+ (cT1)	Pembrolizumab + RT (single fr 7 Gy)

Anti PD-1: Pembrolizumab; Anti PD-L1: Durvalumab; Anti CD73:

Oleclumab; FLT3: FMS-like tyrosine kinase 3

RT & immune therapy: Evidence in BC

- > Limited efficacy in BC as monotherapy
- Most robust responses in TNBC, PD-L1 positive, first-line palliative setting
- > Uncertainties about what to do after the progression
- Not neglectable toxicities ≥ G3

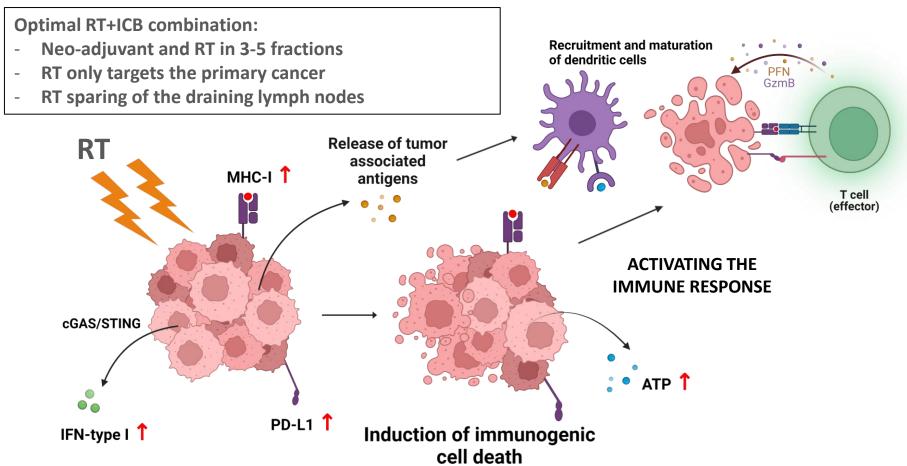
Radiation therapy & immune therapy — Neo-CheckRay

- Introduction
- Breast cancer immunogenicity
- Immunotherapy in BC: where are we?
- Luminal-B BC: Neo-CheckRay
- Discussion
- Conclusions

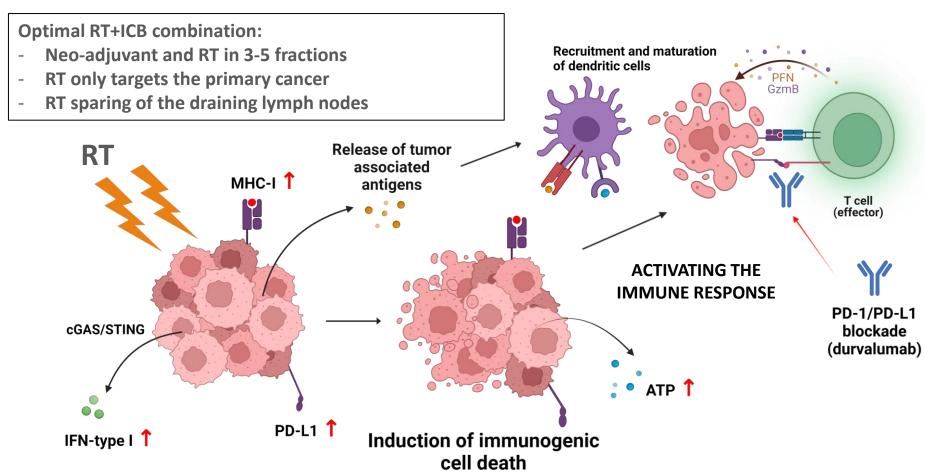
NEO-CHECKRAY primary endpoint results

A randomized phase 2 trial evaluating Stereotactic Body Radiation Therapy (SBRT) to the Primary Breast Cancer +/- Durvalumab +/- Oleclumab combined with Neoadjuvant Chemotherapy for Early-Stage High Risk ER+/HER2-

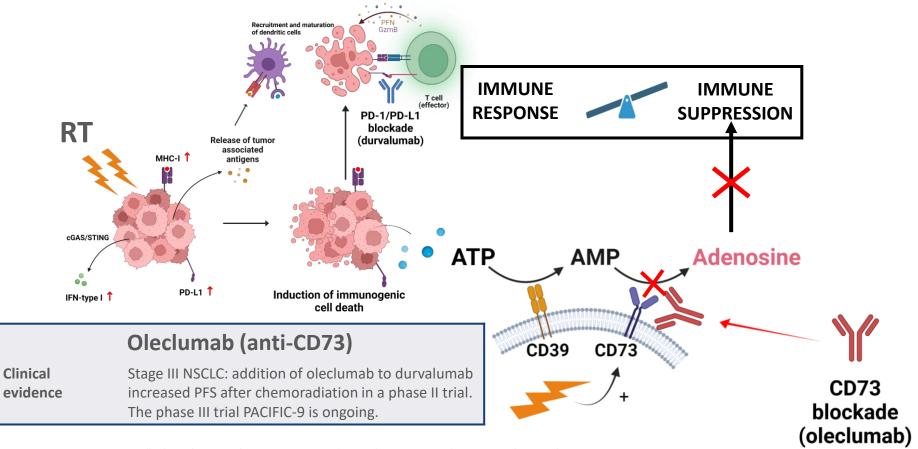
<u>Alex De Caluwé</u>, Isabelle Desmoulins, Kim Cao, Vincent Remouchamps, Adinda Baten, Eleonore Longton, Karine Peignaux, Guilherme Nader Marta, Luca Arecco, Elisa Agostinetto, Paulus Kristanto, Xavier Catteau, Denis Larsimont, Roberto Salgado, Philip Poortmans, Christos Sotiriou, Martine Piccart, Michail Ignatiadis, Emanuela Romano, Laurence Buisseret


An investigator-initiated trial sponsored by the JULES BORDET Institute Brussels, Belgium

Background

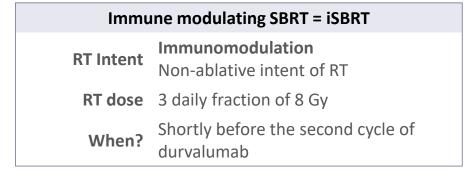

Early-Stage Luminal B Breast Cancer (highly proliferative ER+/HER2-)

- High risk luminal B breast cancer (BC):
 - Defined by higher stage, younger age, high-risk genomic assays, and low ER
 - Benefits from (neo) adjuvant chemotherapy
 - Pathological complete response (pCR) rates after neo-adjuvant chemotherapy (NACT): 15%
- Luminal B BC is an immune "cold" tumor (unlike TNBC):
 - ↓TILs (tumor invading lymphocytes)
 - ↓PD-L1 expression
- PD-1/PD-L1 immune checkpoint inhibitors added to NACT increase pCR rate: 1,2
 - Overall absolute \uparrow pCR Δ **9%** (15% \Rightarrow 24%) ^{1,2}
 - PD-L1 negative subgroup \uparrow pCR Δ 4% (3% \rightarrow 7% 1 & 10% \rightarrow 14% 2)
- Could **new immunotherapy combination strategies** further increase pCR% and provide long term benefit in luminal B BC?


Background: can radiation therapy stimulate the immune response?

Background: can radiation therapy stimulate the immune response?

Background: immunosuppression through the adenosine pathway



Hypothesis:

Radiation therapy works synergistically with durvalumab and oleclumab to enhance the immune response.

How to add radiation therapy in the neo-adjuvant setting?

3x8 Gy Immune response **RT target: primary** breast cancer only

Neo-CheckRay Study Design

Study endpoints and primary endpoint power calculation

Objective

Investigate NACT + iSBRT +/- DURVA +/- OLE to increase treatment response in early, MammaPrint High Risk, luminal B BC.

Primary endpoint

RCB 0-1 rate in ITT population

Secondary endpoints

pCR in ITT population (ypT0/TisypN0)
Safety and tolerability; % breast conserving surgery
Event Free Survival (EFS)

Exploratory endpoints

Fertility Breast Cosmesis Translational endpoints

Primary endpoint power calculation				
Accrual durantion, months	32			
Sample size	132 (44 per arm)			
Randomization	3 arms, 1:1:1			
Hypothesized rates: control arm vs the 2 experimental arms	15% vs 45% RCB 0/1			
Alpha	0.05			
Power	80%			

Final analysis in ITT population				
N screened patients	200			
N randomized patients	147			
N MammaPrint low risk <u>after</u> randomisation (excluded from ITT)	10			
N non-evaluable in ITT	2*			
N evaluable patients in ITT population	135			
Data cut off date	03/09/2024			

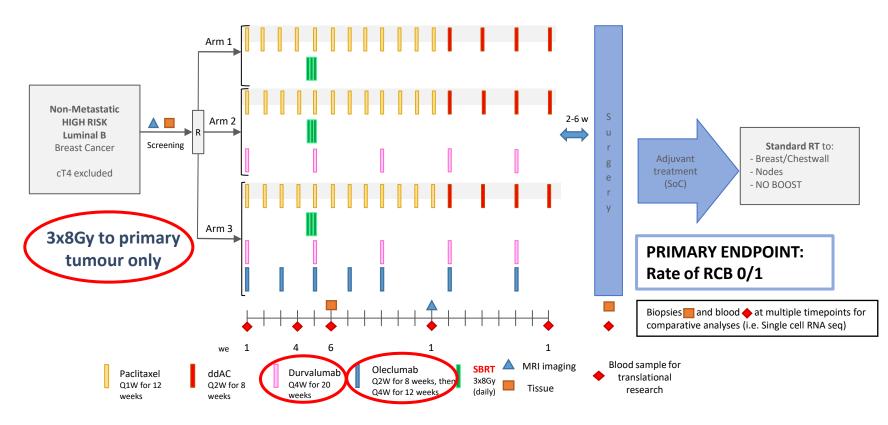
^{* 1} patient withdrew consent to participate in the trial before the surgery timepoint

RT & immune therapy: Neo-CheckRay

De Caluwé *et al. BMC Cancer* (2021) 21:899 https://doi.org/10.1186/s12885-021-08601-1

BMC Cancer

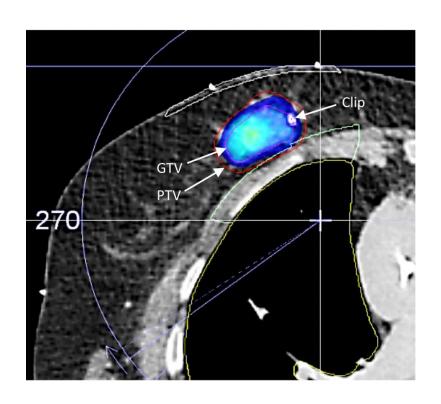
STUDY PROTOCOL

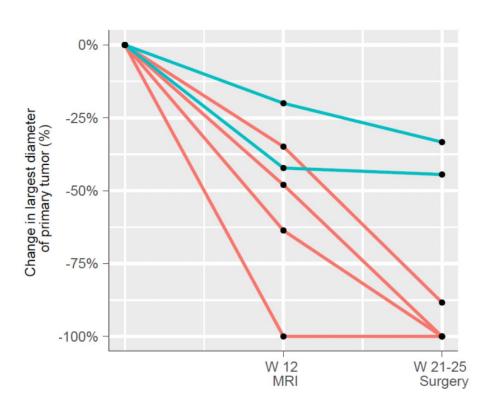

Open Access

Neo-CheckRay: radiation therapy and adenosine pathway blockade to increase benefit of immuno-chemotherapy in early stage luminal B breast cancer, a randomized phase II trial

Alex De Caluwé^{1*}, Laurence Buisseret¹, Philip Poortmans², Dirk Van Gestel¹, Roberto Salgado³, Christos Sotiriou¹, Denis Larsimont¹, Marianne Paesmans¹, Ligia Craciun¹, Drisis Stylianos¹, Christophe Vandekerckhove¹, Fabien Reyal⁴, Veys Isabelle¹, Daniel Eiger¹, Martine Piccart¹, Emanuela Romano^{4†} and Michail Ignatiadis^{1†}

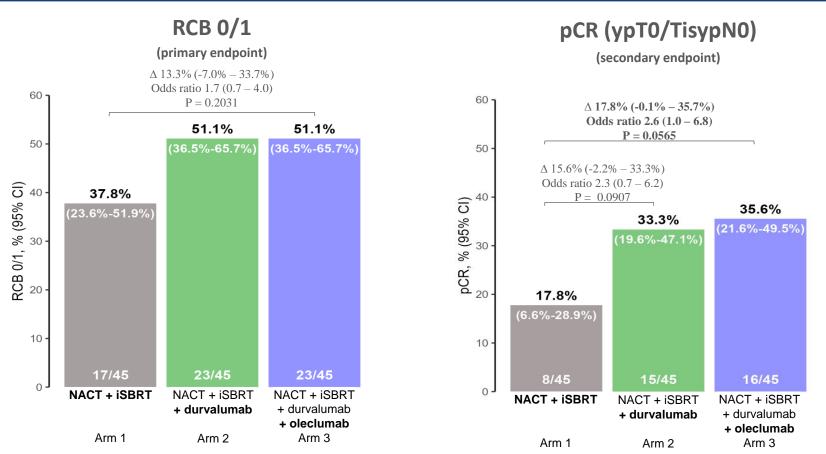
De Caluwé A, et al. BMC Cancer. 2021;21:899.



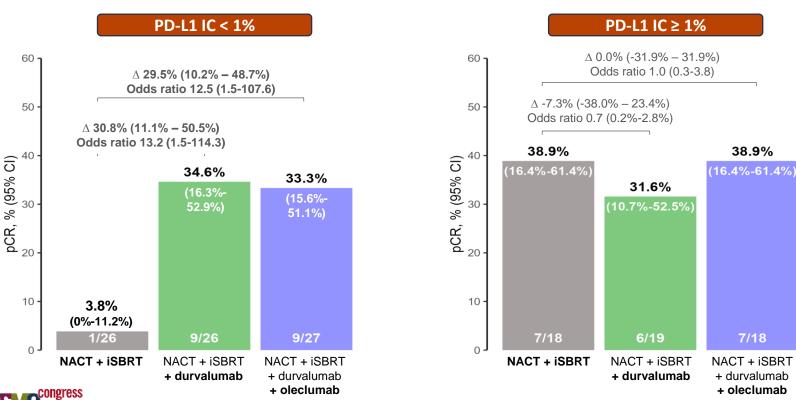

Open access Original research

First-in-human study of SBRT and adenosine pathway blockade to potentiate the benefit of immunochemotherapy in early-stage luminal B breast cancer: results of the safety run-in phase of the Neo-CheckRay trial

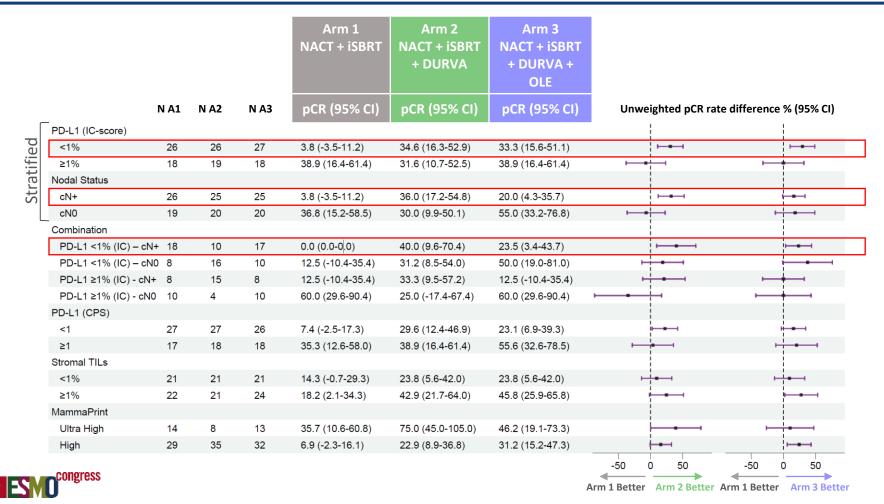
Alex De Caluwe ,¹ Emanuela Romano,² Philip Poortmans,³ Andrea Gombos,⁴ Elisa Agostinetto,⁵ Guilherme Nader Marta,⁵ Zoe Denis,⁶ Stylianos Drisis,⊓ Christophe Vandekerkhove,⁵ Antoine Desmet,¹ Catherine Philippson,¹ Ligia Craciun,⁵ Isabelle Veys,¹⁰ Denis Larsimont,⁵ Marianne Paesmans,⁵ Dirk Van Gestel,¹ Roberto Salgado,¹¹ Christos Sotiriou,⁴ Martine Piccart-Gebhart,⁴ Michail Ignatiadis,⁴ Laurence Buisseret ⁰ ⁴



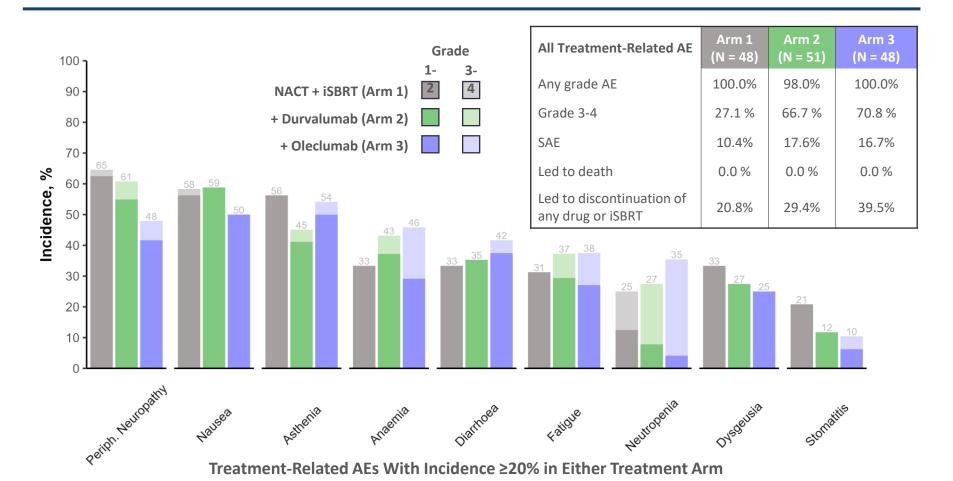
In conclusion, the Neo-CheckRay first-in-human safety run-in demonstrates that the combination of NACT, ICB, oleclumab and SBRT 3*8 Gy to the primary tumor is feasible with encouraging results at surgery and with a manageable toxicity profile in early luminal B BC.

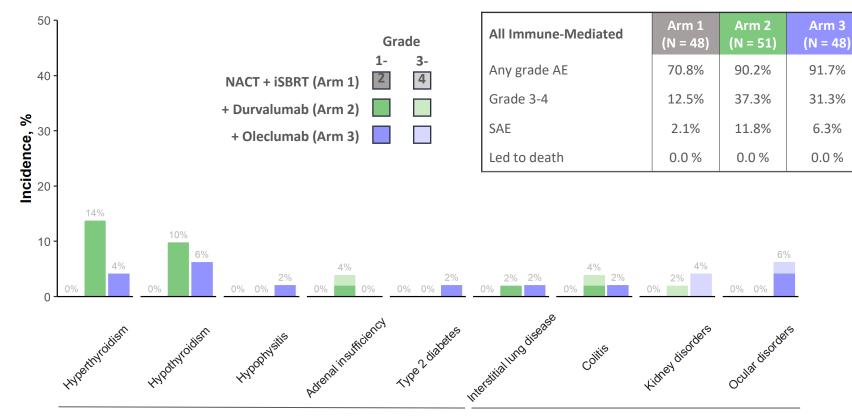

This novel combination is under further investigation in an ongoing phase II trial to evaluate its efficacy.

RCB 0/1 and pCR in ITT population (n=135)


Exploratory subgroup analysis in ITT according factor PD-L1 (stratification factor)

pCR (ypT0/TisypN0)




pCR in subgroups (n=135)

Treatment-Related AEs in Neoadjuvant Phase (n=147)

Immune-Mediated AEs in Neoadjuvant Phase (n=147)

Endocrine IMAE

Non-endocrine IMAE

iSBRT and surgery (n=147)

iSBRT 3x8 Gy

	Arm 1 (N = 48)	Arm 2 (N = 51)	Arm 3 (N = 48)
Any grade AE	12.5%	15.7%	18.8%
Grade 3-4 AE	0%	0%	0%
Grade 1-2 AE	12.5%	15.7%	18.8%
Radiodermatitis	0%	0%	6.3%
Radiation pneumonitis	0%	0%	0%
Breast oedema	0%	0%	0%
Breast pain	4.2%	2.0%	0%

Surgery

	Arm 1 (N = 48)	Arm 2 (N = 51)	Arm 3 (N = 48)		
Type of surgery					
Breast-conserving	66.7%	74.5%	68.1%		
Mastectomy	33.3%	25.5%	31.9%		
Surgery delayed (> 6 weeks after last systemic treatment)	6.3%	2.0%	8.5%		
Any grade AE	14.6%	17.6%	14.6%		
Grade 3-4 AE	2.1%	0.0%	2.1%		
Grade 1-2 AE	12.5%	17.6%	12.5%		
Infection after surgery	4.2%	5.9%	4.2%		
Hematoma/Erythema	2.1%	5.9%	0%		
Wound complication	0%	0%	4.2%		

AE related to iSBRT and surgery up to 30 days after surgery.

Summary and conclusions

NEO-CHECKRAY trial in early luminal B BC:

- First phase II trial investigating the addition to immuno-chemo of:
 - **iSBRT 3x8Gy** to the primary tumor to induce an immune response
 - Anti-CD73 (oleclumab) to decrease the production of immunosuppressive adenosine
- The trial demonstrated promising activity at surgery of the novel treatment combination which will need to be further validated in larger trials
- The benefit iSBRT and immunotherapy combination is more pronounced in patients with PD-L1<1%
- The novel treatment combinations were safe and feasible.
- Extensive ongoing **translational research**, including on-treatment biopsies one week after iSBRT, aims to better understand mechanisms of response and the contribution of oleclumab.

Radiation therapy & immune therapy — Neo-CheckRay

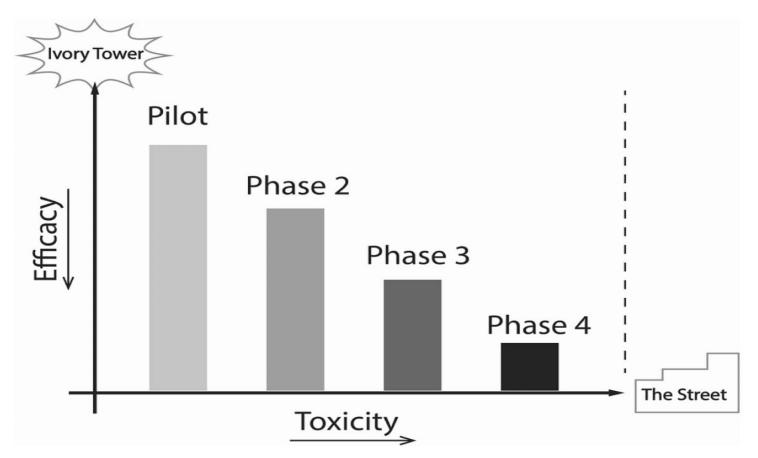
- Introduction
- Breast cancer immunogenicity
- Immunotherapy in BC: where are we?
- Luminal-B BC: Neo-CheckRay
- Discussion
- Conclusions

RT & immune therapy: Evidence in BC

Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com



Review Article

Essential requirements for reporting radiation therapy in breast cancer clinical trials: An international multi-disciplinary consensus endorsed by the European Society for Radiotherapy and Oncology (ESTRO)

Orit Kaidar-Person ^{a,b,c}, Icro Meattini ^{d,e,*}, Liesbeth J. Boersma ^c, Carlotta Becherini ^e, Javier Cortes ^{f,g}, Giuseppe Curigliano ^{h,i}, Evandro de Azambuja ^j, Nadia Harbeck ^k, Hope S. Rugo ^l, Lucia Del Mastro ^{m,n}, Alessandra Gennari ^o, Clare M. Isacke ^p, Maja Vestmø Maraldo ^q, Elisabetta Marangoni ^r, Gustavo Nader Marta ^{s,t}, Ingvil Mjaaland ^u, Viola Salvestrini ^e, Tanja Spanic ^{v,w}, Luca Visani ^e, Andrea Morandi ^d, Matteo Lambertini ^{m,n}, Lorenzo Livi ^{d,e}, Charlotte E. Coles ^x, Philip Poortmans ^{y,z}, Birgitte V. Offersen ^{aa}

RT & immune therapy: Evidence in BC

new systemic treatments for breast cancer: ESTRO endorsed recommendations

Key question 1. Minimal Requirements of Radiation Therapy Features in Clinical Trials Assessing Novel Drugs

Consensus (%)

Strong consensus (95)

Unanimous consensus

(100)

Unanimous consensus

(100)

Unanimous consensus

(100)

KI & I	immune the	rapy: Evidei	nce in BC
International multi-dis	sciplinary consensus or	n the integration o	of radiation the

erapy with

Statement

1a. Long term safety data is needed for combining new-biological agents with RT for patients with

1b. When combining new agents and RT, reporting of RT details and toxicity should be mandatory

1c. There is a lack of high-quality clinical data concerning the combination of RT and new drugs for

breast cancer: prospective research studies are strongly recommended to strengthen the evidence-

1d. The potential risks, benefits, and uncertainties regarding the combination of RT and new drugs

when reporting safety data for both the early and advanced settings [V, A]

for breast cancer should be fully discussed with the patient [V, A]

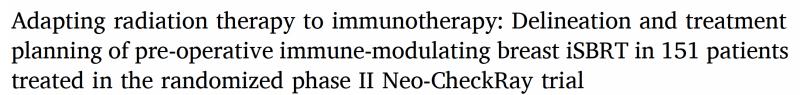

Meattini I, et al. Lancet Oncol 2024;25:e73–83.

for Breast Cancer

base [V, A]

early breast cancer [V, A]

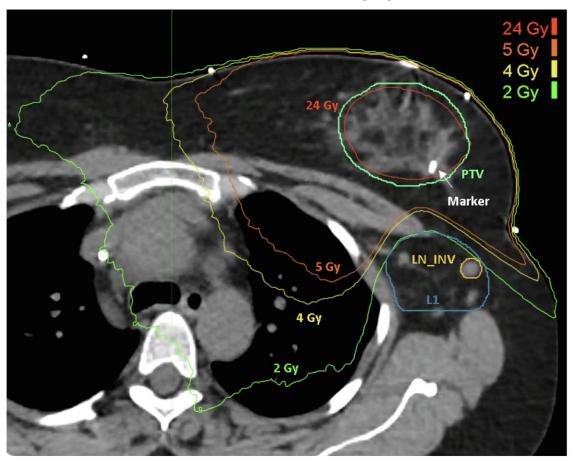
Radiotherapy and Oncology 206 (2025) 110836


Contents lists available at ScienceDirect

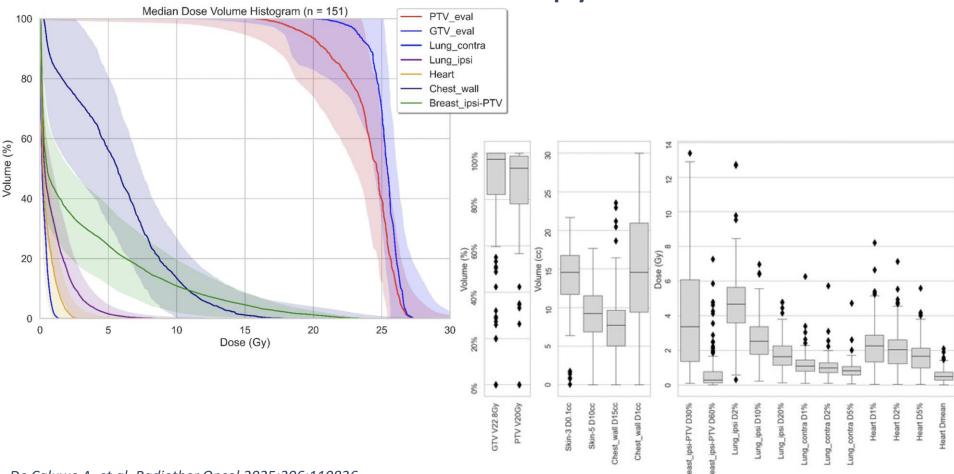
Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

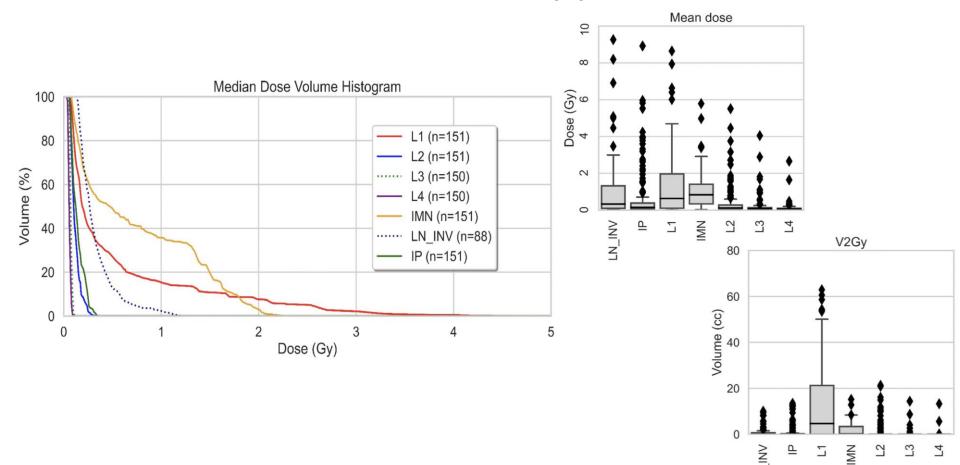
Original Article

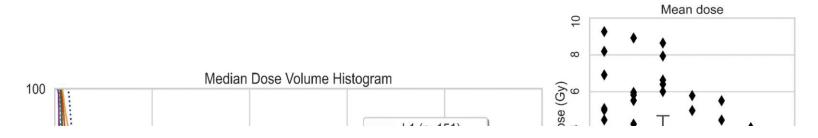


A.De Caluwé ^{a,*}, S. Bellal ^a, K. Cao ^b, K. Peignaux ^c, V. Remouchamps ^d, A. Baten ^e, E. Longton ^f, I. Bessieres ^c, J. Vu-Bezin ^b, Y. Kirova ^b, D.Van Gestel ^a, I. Desmoulins ^c, M. Ignatiadis ^a, E. Romano ^b, L. Buisseret ^a, M. Piccart ^a, C. Vandekerkhove ^a, A. Gulyban ^a, P. Poortmans ^g

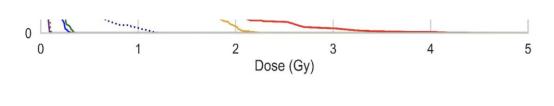

Radiation therapy protocol and achieved doses in the Neo-CheckRay trial.

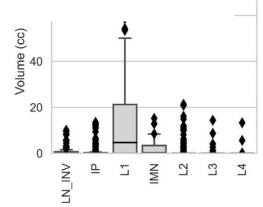
Trial protocol			Achieved in the trial (Achieved in the trial (n = 151)		
olume	Constraint	Planning priority	Median (90 % CI)	Min-max	% of plans that achieved goal	
Target doses						
GTV_eval	V22.8 Gy > 95 % (=V95%)	2	97.4 % (26.5–100) 0–100		60.0 %	
PTV_eval	V19.2 Gy > 80 % (=V80%)	4	95.5 % (56.1–100)	0–100	79.4 %	
Conformality						
Body	D0.1 $cc < 36 Gy$	/	25 Gy (20.5-27.3)	13.3-19.2	99.3 %	
	D2cc < 28.8 Gy	/	25 Gy (20.5-27.3)	13.3-19.2	99.3 %	
Body-PTV	D0.1 cc < 31.2 Gy	/	22.5 (17.5-24.7)	12.6-25.5	100 %	
	D2cc < 24 Gy	/	22.5 Gy (17.5-24.7)	12.6-25.5	100 %	
Body-(PTV $+ 3$ cm)	D0.1 cc < 12 Gy	/	0 Gy (0.0-0.0 Gy)	0.0-0.0	100 %	
Organs at risk						
Skin-3	D0.1 cc < 19.2 Gy	1	9.2 Gy (7.5–18.6)	0.1 - 21.7	98.0 %	
Skin-5	D10cc < 15 Gy	1	9.2 (3.4–14.2)	0.0 - 17.7	98.0 %	
Chest wall	D1cc < 15 Gy	3	14.6(4.3-24.4)	0.0 - 30	55.6 %	
	D15cc < 10 Gy	3	7.7(0.1–15.8)	0.0 - 23.6	79.4 %	
Ipsilateral non-target breast *	V24Gy < 30 %	8	0.0(0-0.6)	0.0 - 0.8	100 %	
	V15Gy < 60 %	8	4.6(1.2–14.3)	0.1 - 22.8	100 %	
Contralateral breast	D1cc < 1 Gy	7	1.0(0.4-2.4)	0.1 - 24.4	49.6 %	
Ipsilateral lung	V20Gy < 2 %	6	0.0(0.0-0.0)	0.0 – 0.1	100 %	
	V10Gy < 10 %	6	0.0(0.0-0.8)	0.0-4.6	100 %	
	V5Gy < 20 %	6	1.6(0.0-7.9)	0.0 - 18.4	100 %	
Contralateral lung	V20Gy < 1 %	6	0.0 (0.0-0.0)	0.0-0.0	100 %	
	V10Gy < 2 %	6	0.0(0.0-0.0)	0.0-0.0	100 %	
	V5Gy < 3 %	6	1.6 (0.0-7.9)	0.0 - 18.4	99.3 %	
Lungs	dMean < 5 Gy	6	0.6 (0.2–1.2)	0.1-1.8	100 %	
Heart	$V20Gy \le 1 \%$	5	0.0 (0.0-0.0)	0.0-0.0	100 %	
	$V10Gy \leq 2~\%$	5	0.0 (0.0-0.0)	0.0-0.3	100 %	
	V5Gy ≤ 5 %	5	0.0 (0.0-1.0)	0.0 - 7.3	99.3 %	
	dMean $\leq 2 \%$	5	0.5 (0.1–1.4)	0.0-2.1	100 %	

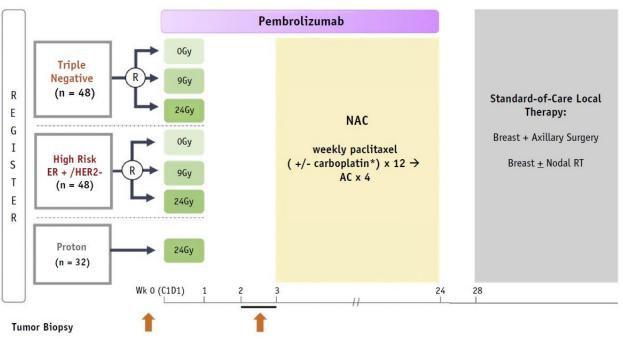

De Caluwe A, et al. Radiother Oncol 2025;206:110836.



B. Volumes of GTV, PTV and ipsilateral breast.					
		N	Median (range)	p	
GTV	Overall	151	11.2 cc		
			(0.9-211.3)		
	CT simulation	119	13.6 cc	< 0.01	
			(1.1-203.2)		
	MRI simulation	32	6.4 cc		
			(0.9-211.3)		
PTV	Overall	151	35.7 cc		
			(4.9-342.4)		
	CT simulation	119	41.4 cc	< 0.01	
			(5.4-334.3)		
	MRI simulation	32	20.1 cc		
			(4.9-342.4)		
Breast	Ipsilateral breast	151	756 cc		
			(116-2613)		
	% breast involvement by GTV	151	1.5%		
			(0.01-28.2)		




De Caluwe A, et al. Radiother Oncol 2025;206:110836.



^{*}Optinal carboplation for triple negative

Fig. 4. Trial schema for P-RAD, a randomized study of preoperative chemotherapy, pembrolizumab, and no-, low-, or high-dose radiation in node-positive, HER2— breast cancer. *Abbreviations:* AC = doxorubicin and cyclophosphamide; NAC = neoadjuvant chemotherapy; RT = radiation therapy.

Radiation therapy & immune therapy — Neo-CheckRay

- Introduction
- Breast cancer immunogenicity
- Immunotherapy in BC: where are we?
- Luminal-B BC: Neo-CheckRay
- Discussion
- Conclusions

RT & immune therapy: Introduction

Panel 2: Final consensus statements on key question 2—current evidence regarding the safety profile of a specific new systemic treatment when used in combination with ablative or palliative radiotherapy for intracranial or extracranial sites of disease in the metastatic and locoregional settings

7) Immunotherapy

- 7a) Immunotherapy and concomitant radiotherapy could be considered during locoregional radiotherapy for breast cancer [II, B]
 - Strong consensus (95%)
- 7b) Immunotherapy and concomitant radiotherapy including ultra hypofractionated regimens used for stereotactic radiotherapy could be offered for advanced breast cancer [II, B]¶
 - Strong consensus (92.5%)

RT & immune therapy: Conclusions

- There is a strong preclinical rationale to consider radiation therapy as a potential game-changer in combination with immunotherapy, but converting this principle into clinical practice is complicated
- > Studies are ongoing, and future results will provide new elements to move further to radioimmunotherapy approaches

RT & immune therapy: Conclusions

There remains a lot of work to be done!

- Predictive biomarkers for RT-IO treatments: PD-L1, TILs, TMB, MSI?
- Sequencing: concomitant RT seems to be better but may optimal timing varies?
- > Further associations: PARPi (radiosensitiser!), other immunomodulatory targeted agents?
- Needed to define and/or confirm:
 - Optimal dose: 24 Gy in 3 fractions = derived from preclinical studies;
 - Optimal fractionation: probably better than a single high fraction;
 - Modality: tumour alone vs WBI;
 - Target definition:
 - > The smaller the better?
 - Uniform vs heterogeneous irradiation?
 - Primary tumour or surgical bed?
 - Irradiation of lymph nodes?

RT & immune therapy: Acknowledgements

PATIENTS AND THEIR FAMILIES

Sponsor: JULES BORDET Institute

CTC Jules Bordet:

Project managers: D. Delaroche, S. Lepannetier

Monitors/CRAs: S. Jamin (lead), B. Gruslin, C. Petropoulos

Regulatory Affairs: F. Hénot

Pharmacovigilance: M-P. Gauthier Data Managers: N. Imatouchan Quality Manager: M. Krieguer

Legal department: M. Smith, H. De Stobbeleir

Central lab: D. Larsimont, L. Craciun

ATPT: D. Eiger, G. Nader-Martha, E. Agostinetto, L. Arecco

Statistics: P. Kristanto, M. Paesmans

BCTL: C. Sotiriou, F. Rothé, M. Carausu, Z. Denis

Collaborators at participating sites

Study co-chair: **E. Romano**, Institut Curie, France PI and investigators in Belgium and France

IDMC M. Kok, S. Michiels, C. Dittrich

Financial support from AstraZeneca and Agendia

Orit Kaidar-Person · Icro Meattini · Philip Poortmans Editors **Breast Cancer Radiation Therapy**A Practical Guide for Technical Applications

The book provides, in a comprehensive yet concise way, essential information to improve the knowledge and skills of all healthcare providers involved in the treatment of patients with breast cancer. The content does not focus on general information that is widely available via different sources, but on technical aspects—"hands-on' daily practices and principles of radiation oncology that are not included in other books. Drawing on information taught in courses at e.g. the ESTRO School, as well as the authors' broad clinical experience, the respective contributions reflect and share the expertise of leading experts in breast cancer radiation therapy, supported by sound data and evidence. Each chapter includes a short introduction summarizing the evidence in the literature and "pearls" (a short bullet-point summary), and is enriched by tables, figures and illustrations to provide a concise, easy-to-follow and appealing overview.

The book, containing also useful electronic supplementary material, will be of interest to a wide range of readers, including radiation oncologists, radiation technicians, medical physicists, and others involved in breast cancer care.

Kaldar-Person - Meatlini - Poortmans - Ec

Breast Cancer Radiation Therapy

Breast Cancer Radiation Therapy

A Practical Guide for Technical Applications

Orit Kaidar-Person Icro Meattini Philip Poortmans Editors

