

Aplicación de IA en el manejo del cáncer de mama: *Toolbox-3*

Philip Poortmans, MD, PhD
Iridium Netwerk & Antwerp University, Antwerpen (B)

The future of cancer therapy

Conflict of interest

Affidea – medical advisor

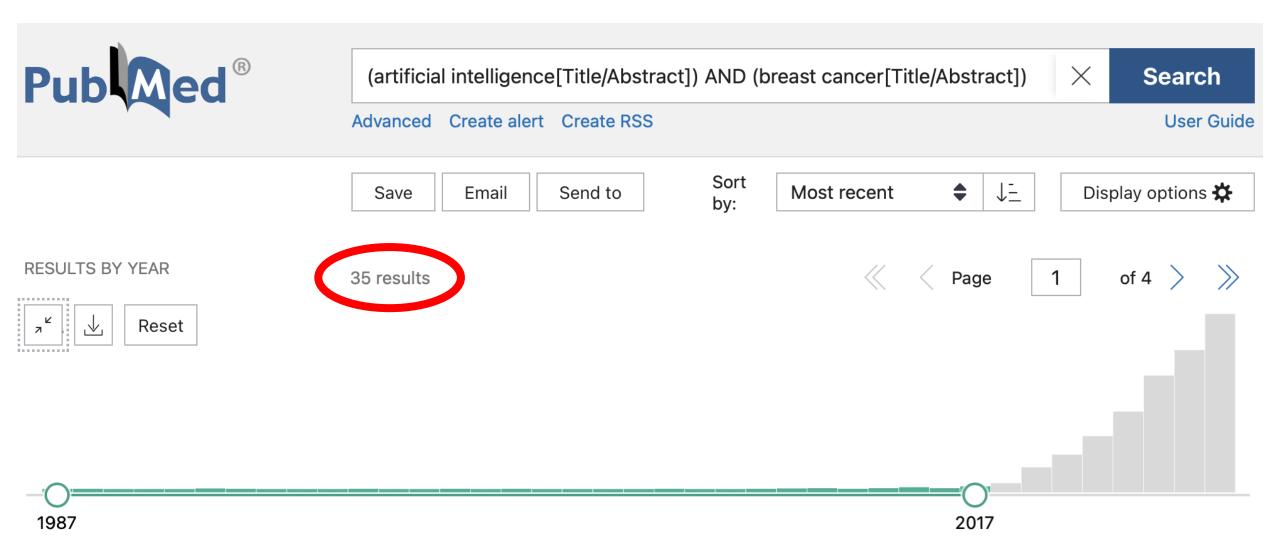
MSD - consultant

And I worry about the future...

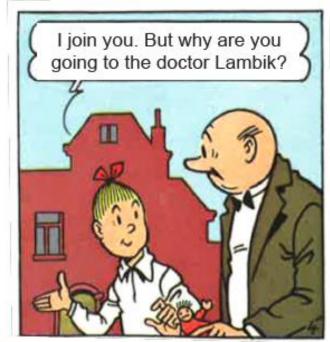
Artificial intelligence in BC management – TB-3

- Introduction
- The ToolBox-3 project
- TB-3 outcomes
- What about radiation oncology?
- Some critical notes
- Conclusions

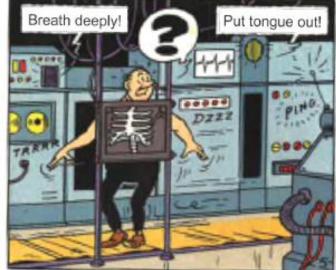
Hace 8 años...

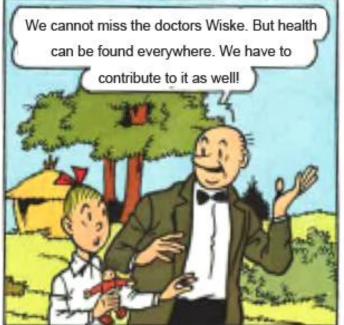

Name Philip Poortmans

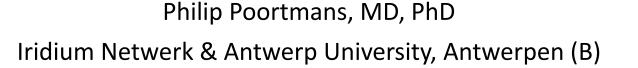
Institute Institut Curie, Paris, France


This house believes that 20 years from now, due to the advances in technology, the need for human input in radiotherapy will be minimal.

Against the motion: There will still be a considerable need for human input in radiotherapy despite the technological advances.

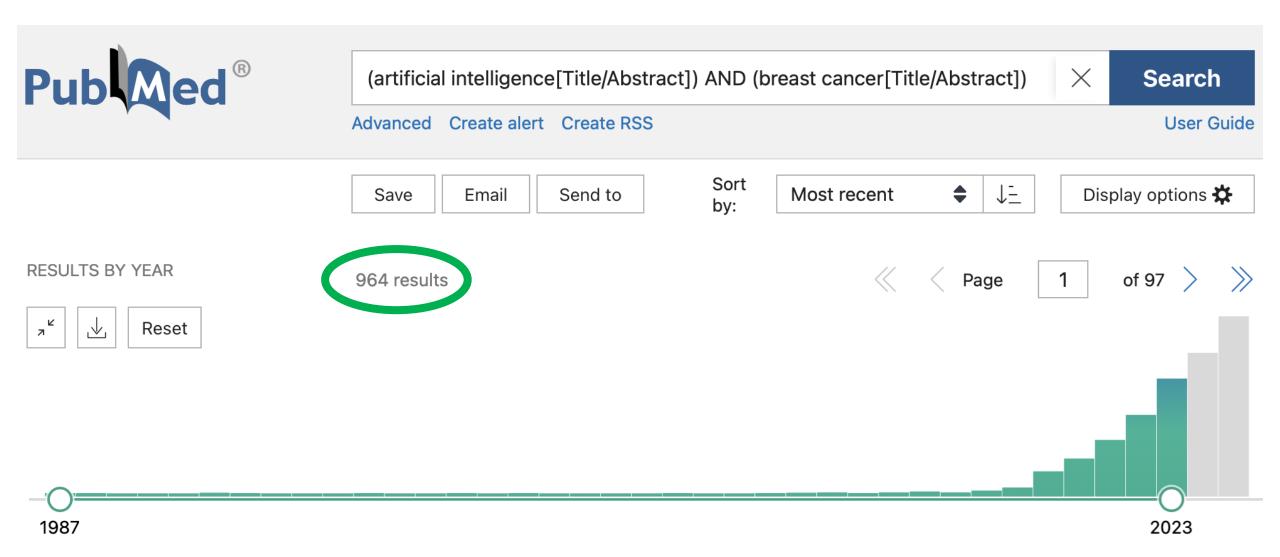





Hace 2 años...

Automatization in volume contouring:

Present and future



The future of cancer therapy

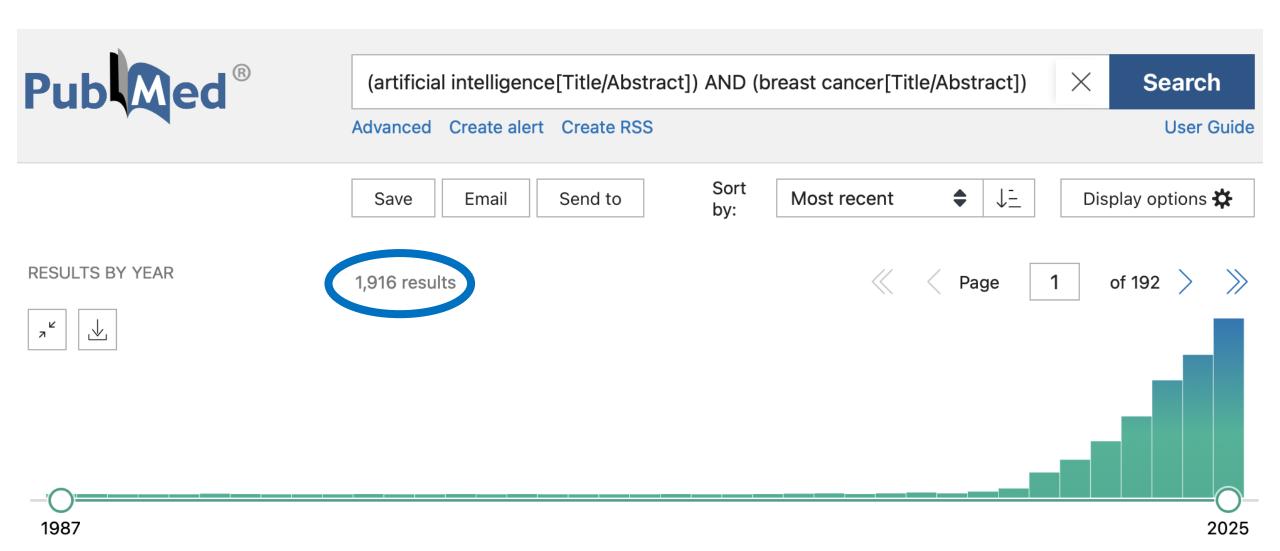
Aplicación de IA en el manejo del cáncer de mama:

Toolbox-3

Hoy en día...

Philip Poortmans, MD, PhD

Iridium Netwerk & Antwerp University, Antwerpen (B)



The future of cancer therapy

THELANCETONCOLOGY-D-25-00723R2

\$1470-2045(25)00463-2

Embargo: [add date when known]

Doctopic: Review and Opinion

PubMed List

25TLO0723

Review

Embargo until publication on 24-11-2025

The Lucerne Toolbox 3: digital health and artificial intelligence to optimise the patient journey in early breast cancer—a multidisciplinary consensus

André Pfob; Katja Pinker, Ines Vaz-Luis, Antonio Di Meglio, Maria João Cardoso, Giuseppe Curigliano, Oreste Davide Gentilini, Günther Gruber, Nik Hauser, Jörg Heil; Orit Kaidar-Person, Michael Knauer, Han-Byoel Lee, Sae Byul Lee, Sherene Loi, Meinrad Mannhart, Stella Mastora, Icro Meattini, Rosa Di Micco, Aurelia Noske, Fedro Alessandro Peccatori, Fiorita Poulakaki, Mattea Reinisch, Isabel T Rubio, Charlie Swanton, Christoph Tausch, Marie-Jeanne Vrancken Peeters, Jong Han Yu, Walter Paul Weber, Norman Zerbe, Philip Poortmans, Carsten Denkert, Ritse Mann, Suzette Delaloge, Peter Dubsky, for the Toolbox 3 Consortium

THELANCETONCOLOGY-D-25-00723R2

\$1470-2045(25)00463-2

e 1 r 1111 r 1 1 1 1

Embargo until publication on 24-11-2025

The Toolbox consortium

- Provide detailed guidance for the multidisciplinary treatment team
- at all stages of the patient journey from diagnosis to surgery and irradiation including adjuvant treatments
- based on high-level clinical evidence when available and expert consensus when required

Toolbox 1: Locoregional after PST

Panel 1: Overview of working packages

Working package 1 (appendix pp 3-4)

Basic requirements: multidisciplinary team meetings and patient visits with clinical specialists

Working package 2 (appendix pp 5-8)

Diagnostic assessment of patients planned for primary systemic therapy: pathology, imaging, and marking of breast and axilla at diagnosis

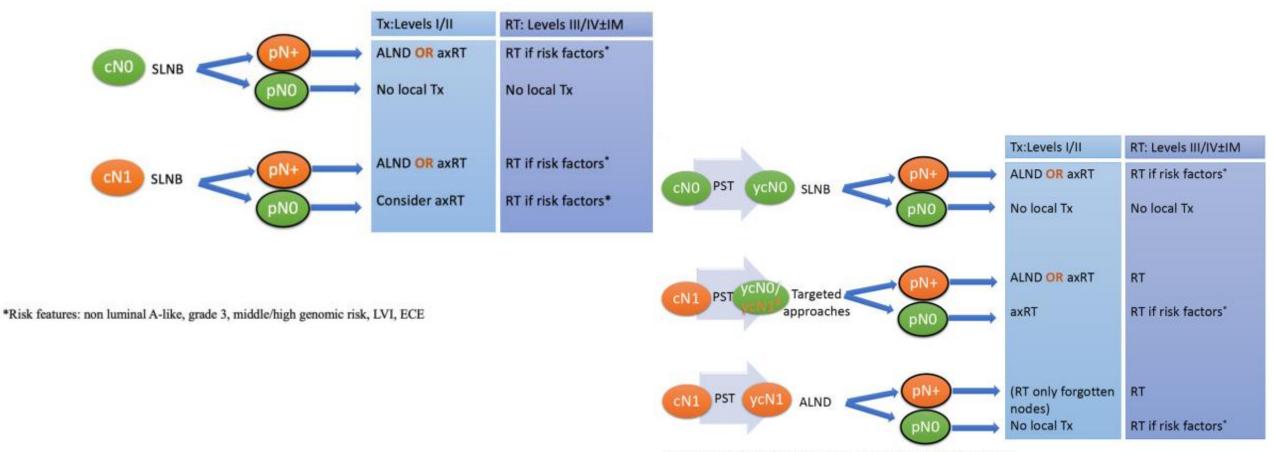
Working package 3 (appendix p 9)

Tumour response to primary systemic therapy: optimal timepoints and modalities of response assessments

Working packages 4 and 5 (appendix pp 10–14)

Preoperative surgical plan and preoperative and intraoperative locational techniques for breast and axillary surgery

Working package 6 (appendix p 15)


Basic quality control and benchmarks, and patient reported outcomes

- Inclusion of all main European oncology societies and patient advocates involved in breast cancer treatment: ESSO, ESTRO, ESMO, ESO, EUROPADONNA, EUSOBI, EUBREAST, OPBC
- Inclusion of key opinion leaders from major clinical trial groups: ABCSG, EORTC, GBG, IBCSG

Dubsky P, et al. Lucerne Toolbox - Breast conservation and axillary management after primary systemic therapy. Lancet Oncology. 2020 Kaidar-Person O, et al. Toolbox 2 to optimise axillary management. eClinicalMedicine. 2023

Toolbox 2: Axillary Management

^{*} risk features: non luminal A-like, grade 3, middle/high genomic risk, LVI, ECE

DubskyP, et al. Lucerne Toolbox - Breast conservation and axillary management after primary systemic therapy. Lancet Oncology. 2020

Kaidar-Person O, et al. Toolbox 2 to optimise axillary management. eClinicalMedicine. 2023

^{*} some targeted approaches like TAD do not require radiologic axillary complete remission by ultrasound

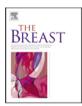
Toolbox 3: The Promises of AI in Oncology ...

The promises of AI in oncology

- increase care accessibility
- increase patient empowerment
- improve clinical outcomes
- improve quality of life ...
 - ... for patients AND clinicians
- provide individualised care
- increase cost-effectiveness

Labrique et al. Glob Health 2018; 14:1-8 | Hosny et al. Nat Rev Cancer 2018; 18:500-510 | Pfob et al. Ann Surg 2023; 277(1):E144-52 Basch et al. JAMA 2017; 318:197-198 | Pfob et al. J Clin Oncology 2022; 40(17):1903-15

... and the Reality


DALLE

- heterogenous, analogue data in outdated clinical information systems
- lack of information flow across sectors | lack of patient-centered care
- lack of automated processes (guideline recommendations, tumorboards)

Pfob et al: Current landscape of hospital information systems in gynecology and obstetrics in Germany. Arch Gynecol Obstet 2023 Pfob et al: Status quo and future directions of digitalization in gynecology and obstetrics in Germany. Arch Gynecol Obstet 2023

Winter is over: The use of Artificial Intelligence to individualise radiation therapy for breast cancer[⋆]

Philip M.P. Poortmans ^{a, *}, Silvia Takanen ^b, Gustavo Nader Marta ^{c, d}, Icro Meattini ^{e, f}, Orit Kaidar-Person ^g

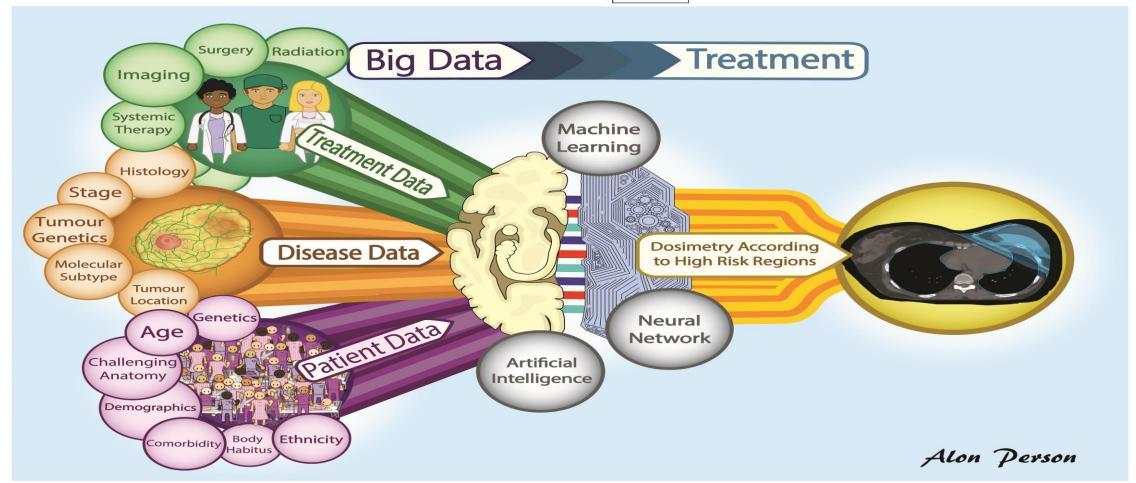
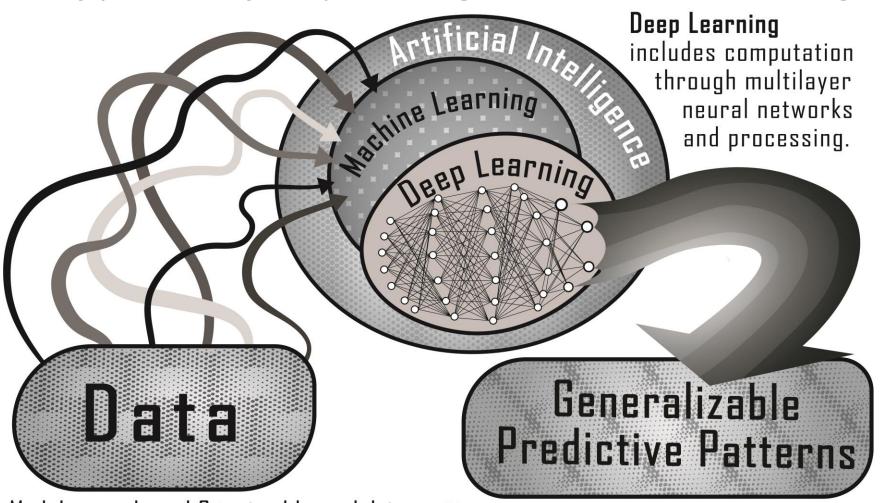



Illustration of position of deep learning (DL) vs machine learning (ML) & Al

Models are shaped & trained by undelying patterns. The more variables to train the model, the more accurate it becomes.

Alon Derson

Artificial intelligence in BC management – TB-3

Introduction


- The ToolBox-3 project
- TB-3 outcomes

- What about radiation oncology?
- Some critical notes
- Conclusions

Definition

- Urgent need of knowledge to guide clinical practice and research
- opposed to knowledge of theoretical or purely scientific interest
- What is the performance of Artificial Intelligence-based breast cancer screening?

Operationalized question

 follows PICO (patient intervention, control, outcome) format

- P: For patients presenting for routine breast cancer screening,
- I: does AI-based breast cancer screening
- C: compared to routine breast cancer screening
- O: detect as many cancers?

Based on

- methodological quality (level of evidence)
- feasibility
- · applicability
- prospective RCT
- 1:1 Randomizatio
- Primary outcome: cancer detection rate
- Follow-Up: 2 years

Part 1

Definition

- · Urgent need of knowledge to guide clinical practice and research
- · opposed to knowledge of theoretical or purely scientific interest
- · What is the performance of Artificial Intelligence-based breast cancer screening?

Patient / Population

Intervention

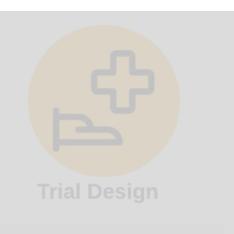
Comparison

0 Outcome

Part 1

Definition

- · Urgent need of knowledge to guide clinical practice and research
- · opposed to knowledge of theoretical or purely scientific interest
- · What is the performance of breast cancer screening?


Artificial Intelligence-based

Operationalized question

· follows PICO (patient, intervention, control, outcome) format

- · P: For patients presenting for routine breast cancer screening,
- · I: does AI-based breast cancer screening
- · C: compared to routine breast cancer screening,
- O: detect as many cancers?

Part 1

Research Question

Definition

- Urgent need of knowledge to guide clinical practice and research
- opposed to knowledge of theoretical or purely scientific interest
- What is the performance of Artificial Intelligence-based breast cancer screening?

Operationalized question

 follows PICO (patient, intervention, control, outcome) format

- P: For patients presenting for routine breast cancer screening,
- I: does Al-based breast cancer screening
- C: compared to routine breast cancer screening,
- O: detect as many cancers?

Based on

- methodological quality (level of evidence)
- feasibility
- · applicability
- · prospective RCT
- 1:1 Randomization
- Primary outcome: cancer detection rate
- Follow-Up: 2 years

Part 1

Toolbox 3 – Knowledge gaps in digital breast cancer

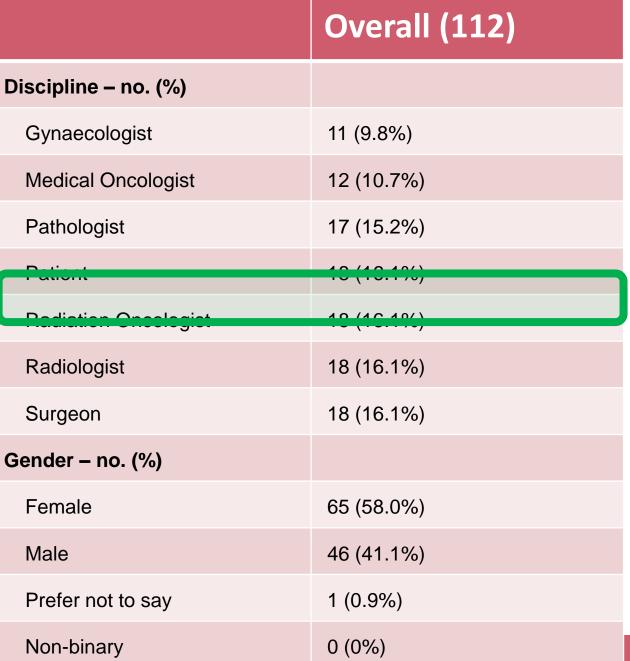
DELPHI process

Rank the importance of 54 knowledge gaps

Consensus conference

Discuss and consent trial design to address knowledge gaps

Working Packages



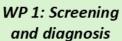
- WP 1: Diagnostic measures and screening
- WP 2: Surgery and surgical planning
- WP 3: Pathology
- WP 4: Systemic therapy
- WP 5: Radiation oncology
- WP 6: Post-primary treatment/ follow-up
- WP 7: General clinical pathway

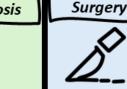
Artificial intelligence in BC management – TB-3

- Introduction
- The ToolBox-3 project
- TB-3 outcomes
- What about radiation oncology?
- Some critical notes
- Conclusions

Results

Results


Brustzentrum Heidelberg Klinik St. Elisabeth


Q1: Al for diagnostic mammography

-> Sequential read study for AI (assisted) vs. human-only read

Q2: Implementing AI in screening

-> multi-centre cohort study using different AI tools and strategies

WP 2:

Q14: more breast conserving surgery

-> RCT evaluating improved digital decision-support

Q11: omission of surgery after PST

-> non-inferiority RCT for AI-based biopsy and omission of surgery

WP 1: Diagnostic measures and screening

WP 2: Surgery and

surgical planning

WP 3: Pathology

Q3-5: individualized screening, supplemental MRI, breast density

-> multi-centre cohort study using different strategies (clinical, genetic, Al-based imaging)

Q10: Multi-modality imaging

-> 2-phase AI development and prospective validation study for tri-modality response assessment

WP 7: General Pathway

Q17: secondary reexcisions

-> RCT evaluating

computer vision-based surgery for intra-op tumor localization

Q25: histopathologic radiologic correlation

-> Register trial to compare Al-based radiologicalpathological fusion analysis with traditional WHO classification and radiological diagnosis

Q48: Risk of recurrence/ death

-> development study integrating multi-modal treatment and outcome data, clinical implementation RCT

Q48: Risk of treatment toxicity

-> development study integrating multi-modal treatment and toxicity data, clinical implementation RCT

Q28: Personalized systemic

-> Superiority RCT for digital monitoring (risk-stratified, ePRO, passive data, clinical

treatment

AE prompts)

WP 5: Radiation oncology

WP 4: Systemic therapy

WP 6: Post-primary treatment/ follow-up

WP 7: General clinical pathway

Q26: Knowledge database

-> Register trial to digitalize histologic breast WHO classification and evaluate AI-based modification

WP 3: **Pathology**

WP 4: Systemic therapy

-> hybrid type 1 implementationeffectiveness study to evaluate implementation process (and collect clinical data)

Q30: self-management

Radiology

6 of 15 (40%) top knowledge gaps

Question 1: Using AI for diagnostic mammography	
Design	(Within patient trial) sequential read study
Population	patients presenting for mammography/ digital breast tomosynthesis (DBT) in a
	diagnostic setting (i.e. symptomatic masses, findings in screening, history of BC)
Intervention	Al (-assisted) assessment of imaging
Comparison	Only human-based interpretation
Outcome	Co-primary: sensitivity, specificity;
la publich od doto. Do NOT	secondary: NPV, PPV, reading time

Surgery

• 3 of 15 (20%) top knowledge gaps

Question 11: Al to omit breast surgery after neoadjuvant treatment		
Design	non-inferiority RCT, 1:1 randomized into Al-based omission of surgery vs. SOC	
Population	cT1-2, cN0-1, partial/complete response to neoadjuvant treatment on imaging (US or	
	MRI), HER2+/TNBC/LumB Ki67≥40	
Intervention	AI-based vacuum-assisted biopsy (+ whole breast Rx)	
Comparison	SOC	
Outcome	primary: 5-year iDFS;	
	secondary: 5,10,20 -year OS / iDFS / DDFS, health economics, role of TILs/ CTCs, and	
	multi-modal AI imaging for response monitoring	

Pathology

• 2 of 15 (13%) top knowledge gaps

Question 26: Knowledge databases in pathology	
Design	Register trial to provide a comprehensive knowledge database for all
	histopathological lesions in breast pathology
Population	Patients with breast biopsy and histological diagnosis that is included in the current
	WHO classification.
Intervention	no intervention planned regarding patient treatment
Comparison	Comparison of AI-based structured analysis with the traditional WHO classification,
	Step 1: achieve concordance between AI and WHO, Step 2: use AI to modify the WHO
	classification, Step 3: Use the knowledge database to provide aid to pathologists in
	training as well as diagnosis of new samples
Outcome	Replacement of traditional pathology textbooks by a unified knowledge database,
	identification of difficult areas with current classification

Systemic therapy

• 2 of 15 (13%) top knowledge gaps

Question 30: Supporting self-management during systemic therapy		
Design	A hybrid type 1 implementation-effectiveness study. Effectiveness of intervention on	
	clinical outcomes (symptom management and adherence) and gathering data on	
	implementation processes (patient and provider acceptability, feasibility, and	
	scalability of the digital health program).	
Population	early breast cancer patients receiving systemic therapy	
Intervention	self-management support program utilizing digital health tools (therapy-specific	
	educational content, interactive tools for tracking and self-assessing symptoms,	
	access to a self-care practice library, symptom management toolkit).	
Comparison	SOC (no continuous symptom tracking or personalized management support)	
Outcome	(Co)-Primary Outcome: improved adherence to systemic therapy and decreased	
	healthcare utilization (unplanned clinical visits or hospitalizations)	

General clinical pathway

• 2 of 15 (13%) top knowledge gaps

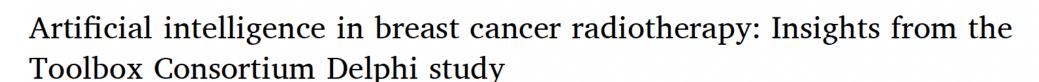
Question 48: Predicting overall risk of recurrence							
Design	Design development study based on trial data including multi-modal treatment and						
	outcome data						
Population	patients undergoing curative breast cancer treatment (including surgery, systemic						
	therapy, radiation therapy)						
Intervention	Prediction model of survival/recurrence, and added treatment benefit						
Comparison	prior models (PredictBreast)						
Outcome	model fit (discrimination, calibration scores), inform clinical implementation RCT						
	(improved shared decision-making process)						

Unpublished data. Do NOT share.

Artificial intelligence in BC management – TB-3

- Introduction
- The ToolBox-3 project
- TB-3 outcomes
- What about radiation oncology?
- Some critical notes
- Conclusions

The Breast 83 (2025) 104537



Contents lists available at ScienceDirect

The Breast

Orit Kaidar-Person ^{a,b,*}, André Pfob ^{c,d}, Vincenzo Valentini ^e, Marianne Aznar ^f, Andre Dekker ^g, Icro Meattini ^h, Jana de Boniface ^{i,j}, David Krug ^k, Maria Joao Cardoso ^l, Giuseppe Curigliano ^{m,n}, Peter Dubsky ^{o,p}, Philip Poortmans ^{q,r}

	estion # in the survey, the question eived by participants	Mean Likert rating	Proportion of recommendations for research agenda
Targ 33.	et volume delineation AI-based automatic delineation is already routinely used in some center. Does AI-based automatic delineation have a sufficient health technology assessment in radiation oncology? (If you think the technology assessment is not sufficient, you should rate this	6.46	9.09 %
34.	question as high/important) The identification of the target volume can differ substantially after different types of surgery. What is the role of AI-based tools for the detection of the target volume in breast cancer radiation oncology after breast-conserving surgery, mastectomy, oncoplastic surgery, and for nodal	6.96	11.22 %
35.	irradiation? Early research indicates that AI may help in the identification of residual breast or lymph node tissue after surgery. What is the development priority for AI-based tools to evaluate residual breast/lymph node tissue after mastectomy/ALND?	6.95	7.05 %

Kaidar-Person O, et al. Breast 2025;83:104537.

Question # in the survey, the question received by participants		Mean Likert rating	Proportion of recommendations for research agenda				
Treatment planning							
36.	Early research indicates that AI-based integromic approaches may help individualizing radiation therapy. How important is the investigation of AI-based, individualized integromic approaches (i.e. adaption of radiation oncology according to germline mutations, circulating	6.87	4.75 %				
	tumor cells/DNA)						
37.	Not every patient may need the same dosage or fractionation depending on tumor size, tumor biology etc. What is the development priority for digital decision support tools for individualized treatment planning with respect to dosage and fractionation?	7.13	19.76 %				
38.	What is the role of digital decision support tools for individualized treatment selection with respect to indication for EBRT, adaptive RT, dose-guided RT, proton therapy, brachy, MR-linac?	6.48	4.26 %				

_	estion # in the survey, the question elived by participants	Mean Likert rating	Proportion of recommendations for research agenda
Eval	uation of treatment plans		
39.	Prediction models exist to demonstrate the risk radiation therapy induced normal tissue complications as well as for the tumor control probability. Have AI-based models a preferred clinical utility, validity, and efficacy over NTCP and TCP models in breast cancer?	6.57	8.10 %
40.	Early research indicates that AI may help in prediction potential side effects. What is the development priority for AI-based risk assessment for potential side	6.75	2.62 %
41.	effects? E.g., inhomogeneity (inframammary fold, nipple) Early research indicates that AI	6.85	9.62 %
	may help in identifying areas that have not received a sufficient radiation dose. How important is the investigation of AI-based models to identify areas that are underdosed?		

Al in BC – ToolBox-3: Radiation oncology Al-based systems for BC auto-delineation

First author [Publication year]	System	Indication	Dataset cases	Volume of interest delineated	Subjective clinical evaluation (Need for corrections)	Contouring time saved with AI assistance	Quantitative evaluation	on
Liu [2021]	RTD-Net	Post mastectomy	99	1 CTV (Breast)	99.3 %/98.9 % No or minor 0.7 %/1.1 % major ^a	50 %	Dice similarity coefficient and Hausdorff distance	0.9 5.65 mm
Almberg [2022]	RaySearch	Left breast whole breast Regional lymphatics	200	7 CTVs (Breast, L1-4, IMN, interpec) 11 OARs	14 % no 71 % minor 15 % major ^b 72 % no 26 % minor 2 % major	75 %		Only specific score per each volume reported
Liu [2021]	U-ResNet	Whole breast	160	1 CTV (Breast)	99.4 % no or minor 0.6 % major	60 %		0.94 4.31 mm
				4 OARs	95 % no 5 % major ^a			

Al in BC – ToolBox-3: Radiation oncology Al-based systems for BC RT-planning

First author [Publication year]	System	Ability	Plan optimisation	Time	Comments
Court [2023]	RPA Compared to manual	Auto- delineation Planning	Tangential Field-in-field segments Supra field ^a	12 min time to edit autogenerated plan	accept around 50 %
Bakx [2023] van de Sande [2021]	RS Compared to 2 non-AI autoseg	Auto- delineation Planning	Tangential Field-in-field segments	Reduced	
Yoder [2019]	EZFluence ^b	Planning	Tangential Field-in-field segments	Reduced	Better dose optimisation Similar OAR dose

Al in BC – ToolBox-3: Radiation oncology Al-based systems for BC auto-delineation

Clinical and Translational Radiation Oncology 49 (2024) 100855

Contents lists available at ScienceDirect

Clinical and Translational Radiation Oncology

journal homepage: www.sciencedirect.com/journal/clinical-and-translational-radiation-oncology

Validation of different automated segmentation models for target volume contouring in postoperative radiotherapy for breast cancer and regional nodal irradiation

```
Eva Meixner <sup>a,b,c,d,*</sup>, Benjamin Glogauer <sup>a,b</sup>, Sebastian Klüter <sup>a,b</sup>, Friedrich Wagner <sup>a,b</sup>, David Neugebauer <sup>a,b</sup>, Line Hoeltgen <sup>a,b,c</sup>, Lisa A. Dinges <sup>a,b,c</sup>, Semi Harrabi <sup>a,b,c,d</sup>, Jakob Liermann <sup>a,b,c,d</sup>, Maria Vinsensia <sup>a,b,c</sup>, Fabian Weykamp <sup>a,b,c,d,e</sup>, Philipp Hoegen-Saßmannshausen <sup>a,b,c,d</sup>, Jürgen Debus <sup>a,b,c,d,e</sup>, Juliane Hörner-Rieber <sup>a,b,c,d,e,f</sup>
```

Al in BC — ToolBox-3: Radiation oncology Al-based systems for BC auto-delineation

- √ high-quality accuracy
- ✓ provide standardization & efficient support for guideline-based TV contouring Next step: fully automated RT treatment planning workflow

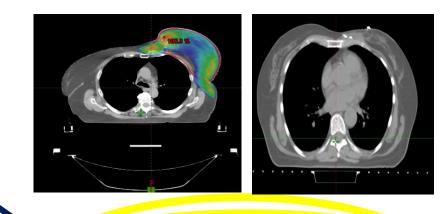
The <u>most</u> challenging target volume for breast irradiation is:

RT boost

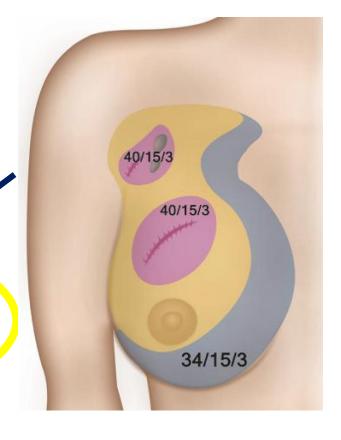
(High risk)

Younger ≤ 40 yrs

Grade 3


Triple negative

Positive/close margins

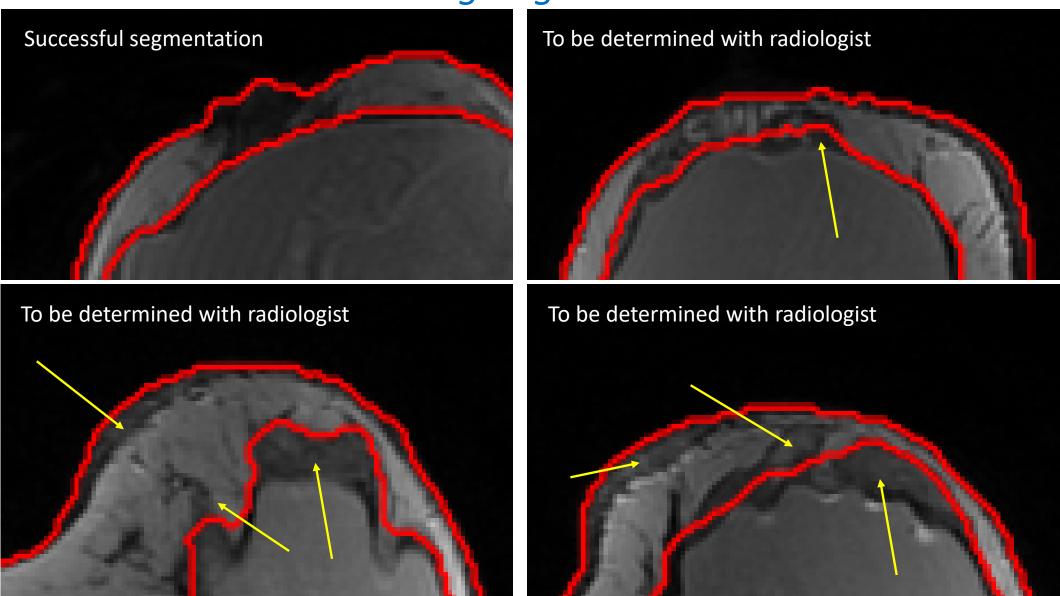

Partial breast RT

(Low risk)

Reduces breast side effects with equivalent tumour control

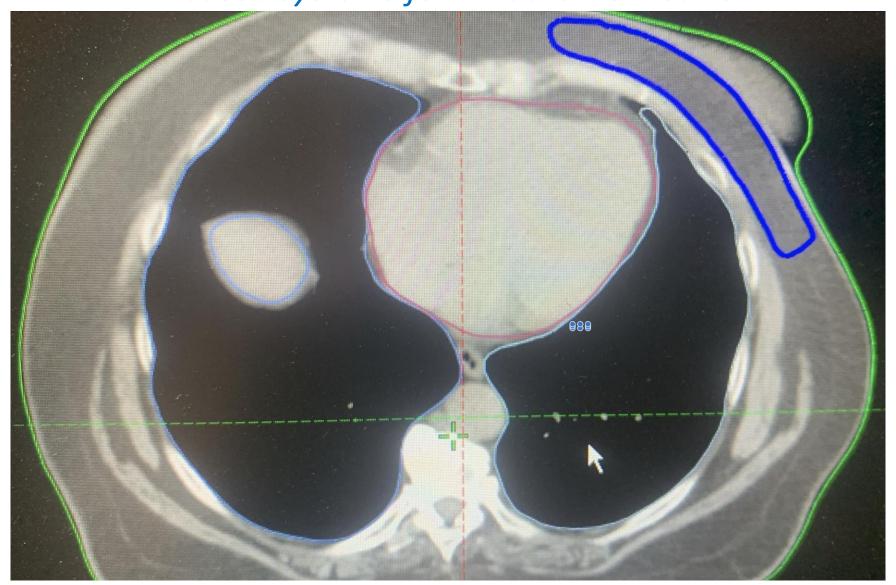
Tumour bed

Identifying the high-risk volumes for local recurrence after mastectomy and breast reconstruction to guide postmastectomy radiation therapy



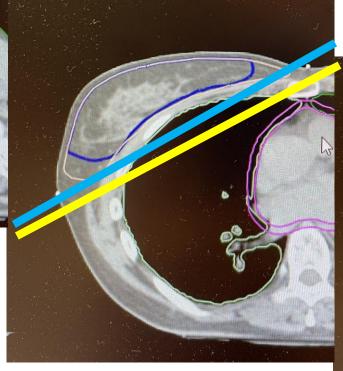
A Brilliant Secret: BRILLIANT

Ongoing work

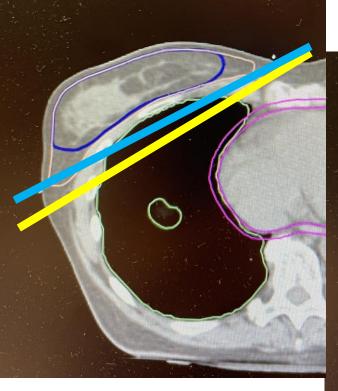


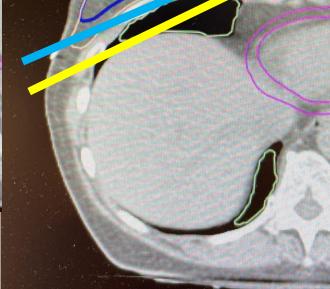
Artificial intelligence in BC management – TB-3

- Introduction
- The ToolBox-3 project
- TB-3 outcomes
- What about radiation oncology?
- Some critical notes
- Conclusions

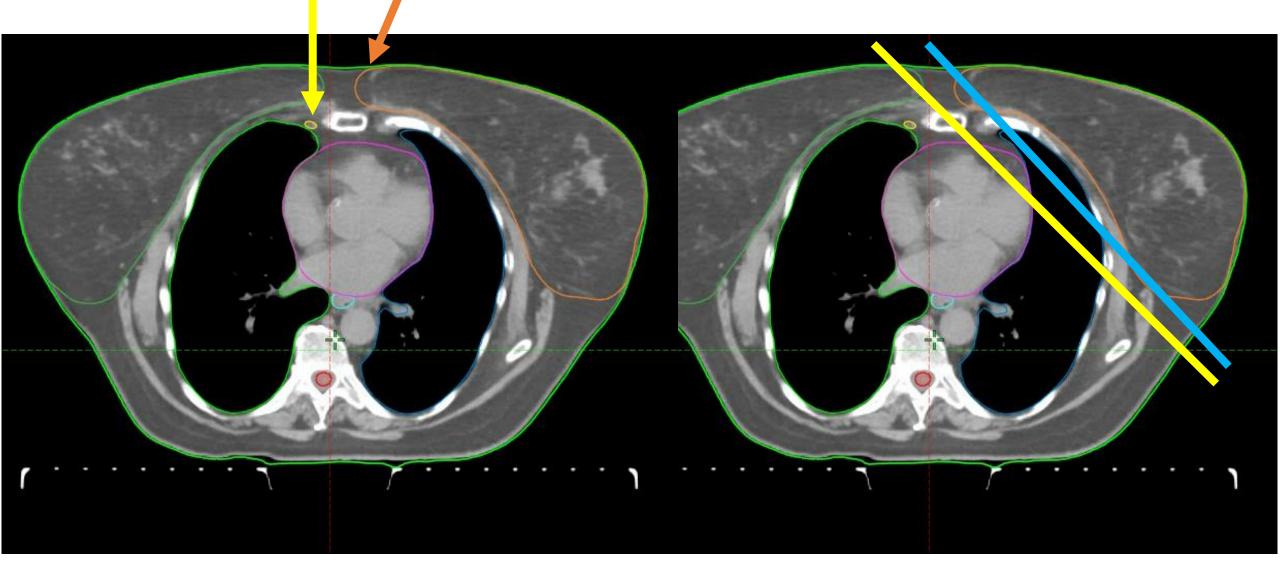


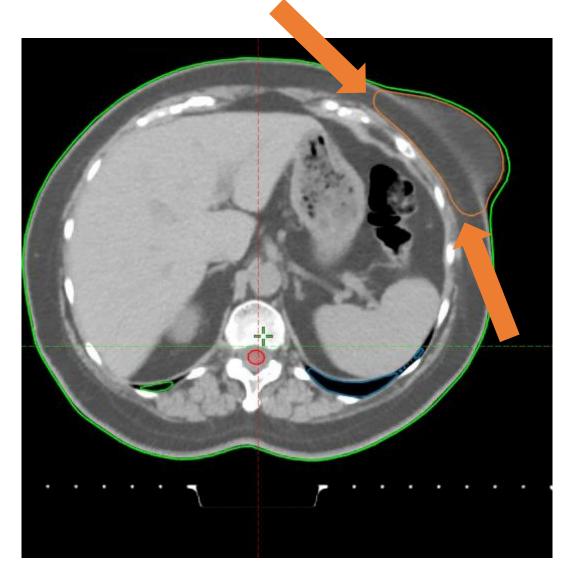

AI-based systems for BC auto-delineation

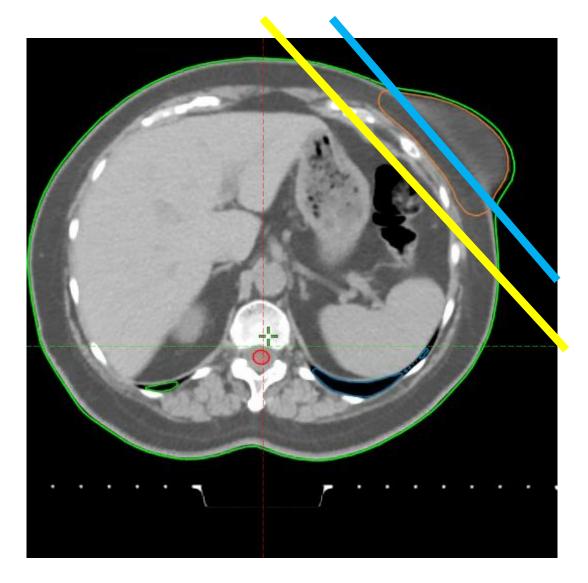




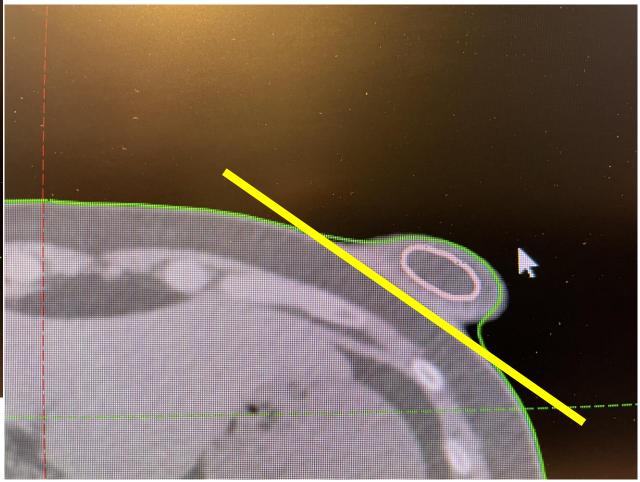
Contouring by resident vs expert

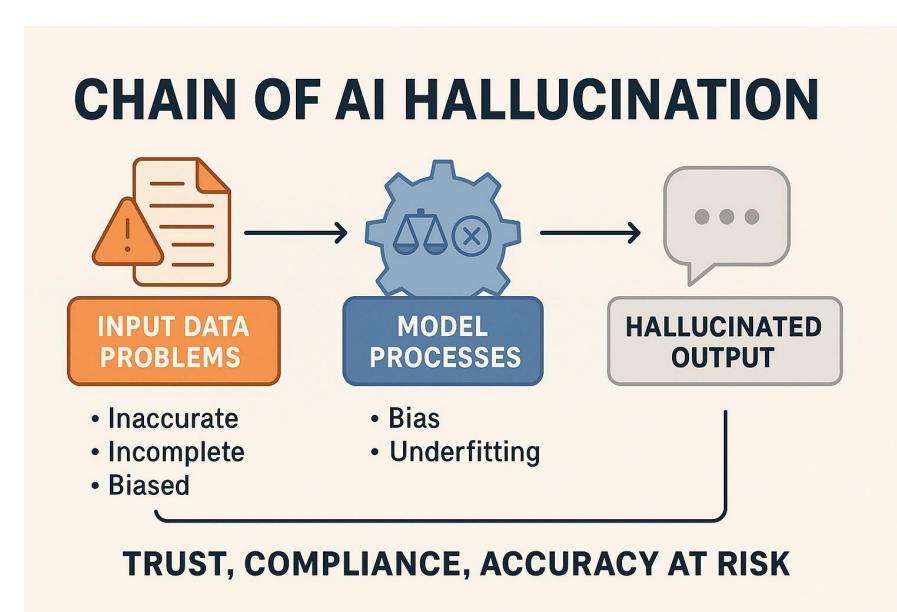


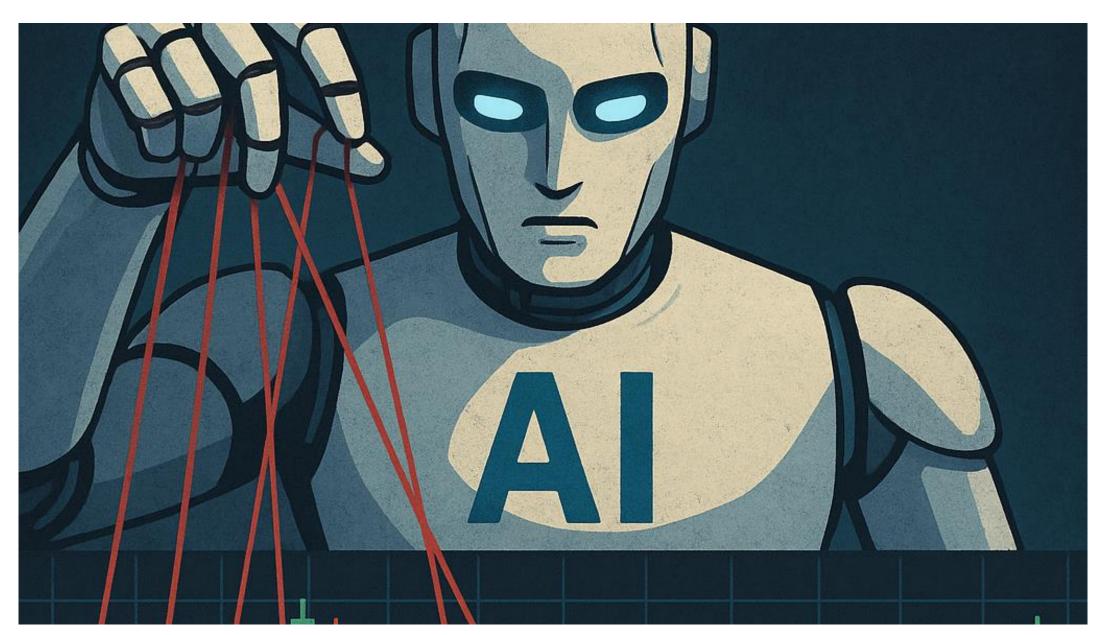




ABAS – wrong atlas (RTOG = field-based = 20^{th} century)


ABAS - wrong atlas (RTOG = field-based = 20th century)





Expert contouring


Conclusions

DECISION

Conclusions

A well-balanced approach can bring together the **precision**, **consistency**, **and performance** of the Al with human abilities like **integration**, **adaptation**, **and creativity**, to improve patient care and outcomes.

Artificial intelligence in BC management – TB-3

- Introduction
- The ToolBox-3 project
- TB-3 outcomes
- What about radiation oncology?
- Some critical notes

Conclusions

Al in BC – ToolBox-3: Conclusion

Conclusion

Toolbox 3 has provided

- comprehensive research agenda to address the most pressing knowledge gaps in digital breast cancer care
- collaboration across disciplines and aligning research priorities with clinical and patient needs
- potential to
 - enhance patient outcomes
 - improve the efficiency of care delivery
 - set new standards for integration of digital health technologies in oncology

Will doctors trained in using Albe better in the future?

YES

Will AI replace doctors? NO

The current state of the AI debate:

Al in BC – ToolBox-3: *Introduction*

THELANCETONCOLOGY-D-25-00723R2

\$1470-2045(25)00463-2

25TLO0723

Review

Embargo until publication on 24-11-2025

cancer—a multidisciplinary consensus

André Pfob; Katja Pinker, Ines Vaz-Luis, Antonio Di Meglio, Maria João Cardoso, Giuseppe Curigliano, Oreste Davide Gentilini, Günther Gruber, Nik Hauser, Jörg Heil; Orit Kaidar-Person, Michael Knauer, Han-Byoel Lee, Sae Byul Lee, Sherene Loi, Meinrad Mannhart, Stella Mastora, Icro Meattini, Rosa Di Micco, Aurelia Noske, Fedro Alessandro Peccatori, Fiorita Poulakaki, Mattea Reinisch, Isabel T Rubio, Charlie Swanton, Christoph Tausch, Marie-Jeanne Vrancken Peeters, Jong Han Yu, Walter Paul Weber, Norman Zerbe, Philip Poortmans, Carsten Denkert, Ritse Mann, Suzette Delaloge, Peter Dubsky, for the Toolbox 3 Consortium

Thank you

Toolbox Consortium!

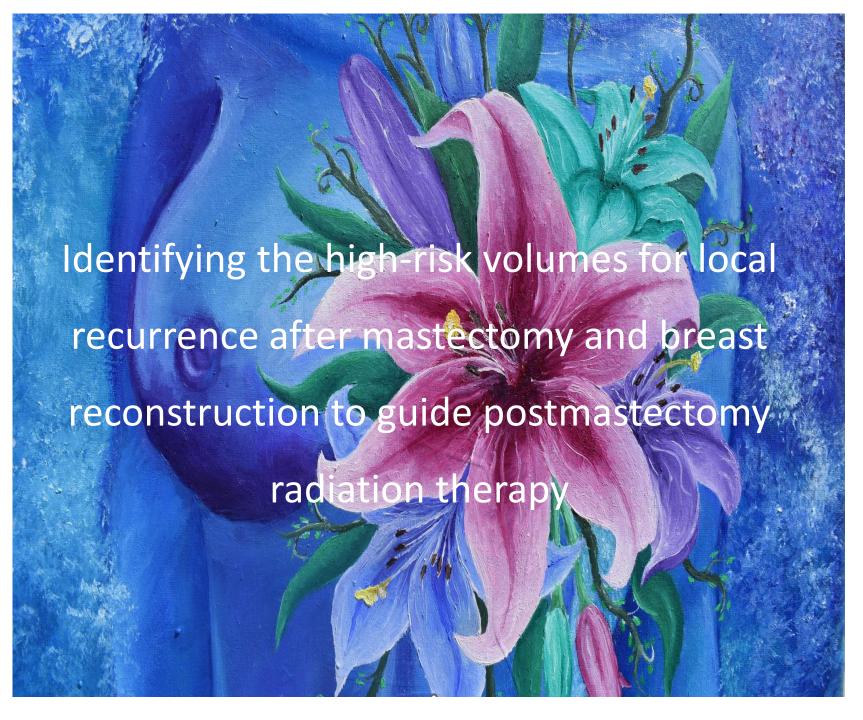
Thank you

Hirslanden Klinik for funding Toolbox 3

@andrepfob

andre.pfob@kse-hd.de

Thank you Toolbox Consortium!


Thank you

Hirslanden Klinik for funding Toolbox 3

Archeological discovery in Switzerland

Thank you!

PhD team:

- Orit Kaidar-Person
- Liesbeth Boersma
- Birgitte Offersen
- Dirk de Ruysscher

BRILLIANT team:

- Debbie Anaby
- Miri Sklair-Levy
- Rinat Bernstein-Molho
- Monica Morrow

Secret team:

- Marissa van Maaren
- Linda de Munck
- Thomas Stindt
- > SaBine Siesling

Others (non-exclusive):

- Icro Meattini
- Trine Tramm
- Sandra Hol Sandra Hol
- Charlotte Coles
- > MJ Cardoso = | |
- Kuehn Thorsten
- Lynda Wyld S S S S

Orit Kaidar-Person · Icro Meattini · Philip Poortmans Editors

Breast Cancer Radiation Therapy

A Practical Guide for Technical Applications

The book provides, in a comprehensive yet concise way, essential information to improve the knowledge and skills of all healthcare providers involved in the treatment of patients with breast cancer. The content does not focus on general information that is widely available via different sources, but on technical aspects — "hands-on" daily practices and principles of radiation oncology that are not included in other books. Drawing on information taught in courses at e.g. the ESTRO School, as well as the authors' broad clinical experience, the respective contributions reflect and share the expertise of leading experts in breast cancer radiation therapy, supported by sound data and evidence. Each chapter includes a short introduction summarizing the evidence in the literature and "pearls" (a short bullet-point summary), and is enriched by tables, figures and illustrations to provide a concise, easy-tofollow and appealing overview.

The book, containing also useful electronic supplementary material, will be of interest to a wide range of readers, including radiation oncologists, radiation technicians, medical physicists, and others involved in breast cancer care.

Breast Cancer Radiation Therapy

Breast Cancer Radiation Therapy

A Practical Guide for Technical Applications

Orit Kaidar-Person Icro Meattini Philip Poortmans Editors

▶ springer.com

🖆 Springer